ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Traffic Predictive Analysis using GPU in Big Data

118   0   0.0 ( 0 )
 نشر من قبل Jongwook Woo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper adopts parallel computing systems for predictive analysis in both CPU and GPU leveraging Spark Big Data platform. The traffic dataset is adopted to predict the traffic jams in Los Angeles County. It is collected from a popular platform in the USA for tracking information on the road using the device information and reports shared by the users. Large-scale traffic data set can be stored and processed using both GPU and CPU in this Scalable Big Data systems. The major contribution of this paper is to improve the performance of machine learning in distributed parallel computing systems with GPU to predict the traffic congestion. We show that the parallel computing can be achieve using both GPU and CPU with the existing Apache Spark platform. Our method can be applicable to other large scale datasets in different domains. The process modeling, as well as results, are interpreted using computing time and metrics: AUC, Precision and Recall. It should help the traffic management in Smart City.

قيم البحث

اقرأ أيضاً

Network Traffic Monitoring and Analysis (NTMA) represents a key component for network management, especially to guarantee the correct operation of large-scale networks such as the Internet. As the complexity of Internet services and the volume of tra ffic continue to increase, it becomes difficult to design scalable NTMA applications. Applications such as traffic classification and policing require real-time and scalable approaches. Anomaly detection and security mechanisms require to quickly identify and react to unpredictable events while processing millions of heterogeneous events. At last, the system has to collect, store, and process massive sets of historical data for post-mortem analysis. Those are precisely the challenges faced by general big data approaches: Volume, Velocity, Variety, and Veracity. This survey brings together NTMA and big data. We catalog previous work on NTMA that adopt big data approaches to understand to what extent the potential of big data is being explored in NTMA. This survey mainly focuses on approaches and technologies to manage the big NTMA data, additionally briefly discussing big data analytics (e.g., machine learning) for the sake of NTMA. Finally, we provide guidelines for future work, discussing lessons learned, and research directions.
The HEP community is approaching an era were the excellent performances of the particle accelerators in delivering collision at high rate will force the experiments to record a large amount of information. The growing size of the datasets could poten tially become a limiting factor in the capability to produce scientific results timely and efficiently. Recently, new technologies and new approaches have been developed in industry to answer to the necessity to retrieve information as quickly as possible to analyze PB and EB datasets. Providing the scientists with these modern computing tools will lead to rethinking the principles of data analysis in HEP, making the overall scientific process faster and smoother. In this paper, we are presenting the latest developments and the most recent results on the usage of Apache Spark for HEP analysis. The study aims at evaluating the efficiency of the application of the new tools both quantitatively, by measuring the performances, and qualitatively, focusing on the user experience. The first goal is achieved by developing a data reduction facility: working together with CERN Openlab and Intel, CMS replicates a real physics search using Spark-based technologies, with the ambition of reducing 1 PB of public data in 5 hours, collected by the CMS experiment, to 1 TB of data in a format suitable for physics analysis. The second goal is achieved by implementing multiple physics use-cases in Apache Spark using as input preprocessed datasets derived from official CMS data and simulation. By performing different end-analyses up to the publication plots on different hardware, feasibility, usability and portability are compared to the ones of a traditional ROOT-based workflow.
Several fundamental changes in technology indicate domain-specific hardware and software co-design is the only path left. In this context, architecture, system, data management, and machine learning communities pay greater attention to innovative big data and AI algorithms, architecture, and systems. Unfortunately, complexity, diversity, frequently-changed workloads, and rapid evolution of big data and AI systems raise great challenges. First, the traditional benchmarking methodology that creates a new benchmark or proxy for every possible workload is not scalable, or even impossible for Big Data and AI benchmarking. Second, it is prohibitively expensive to tailor the architecture to characteristics of one or more application or even a domain of applications. We consider each big data and AI workload as a pipeline of one or more classes of units of computation performed on different initial or intermediate data inputs, each class of which we call a data motif. On the basis of our previous work that identifies eight data motifs taking up most of the run time of a wide variety of big data and AI workloads, we propose a scalable benchmarking methodology that uses the combination of one or more data motifs---to represent diversity of big data and AI workloads. Following this methodology, we present a unified big data and AI benchmark suite---BigDataBench 4.0, publicly available from~url{http://prof.ict.ac.cn/BigDataBench}. This unified benchmark suite sheds new light on domain-specific hardware and software co-design: tailoring the system and architecture to characteristics of the unified eight data motifs other than one or more application case by case. Also, for the first time, we comprehensively characterize the CPU pipeline efficiency using the benchmarks of seven workload types in BigDataBench 4.0.
This paper explains the scalable methods used for extracting and analyzing the Covid-19 vaccine data. Using Big Data such as Hadoop and Hive, we collect and analyze the massive data set of the confirmed, the fatality, and the vaccination data set of Covid-19. The data size is about 3.2 Giga-Byte. We show that it is possible to store and process massive data with Big Data. The paper proceeds tempo-spatial analysis, and visual maps, charts, and pie charts visualize the result of the investigation. We illustrate that the more vaccinated, the fewer the confirmed cases.
With the era of big data, an explosive amount of information is now available. This enormous increase of Big Data in both academia and industry requires large-scale data processing systems. A large body of research is behind optimizing Sparks perform ance to make it state of the art, a fast and general data processing system. Many science and engineering fields have advanced with Big Data analytics, such as Biology, finance, and transportation. Intelligent transportation systems (ITS) gain popularity and direct benefit from the richness of information. The objective is to improve the safety and management of transportation networks by reducing congestion and incidents. The first step toward the goal is better understanding, modeling, and detecting congestion across a network efficiently and effectively. In this study, we introduce an efficient congestion detection model. The underlying network consists of 3017 segments in I-35, I-80, I-29, and I-380 freeways with an overall length of 1570 miles and averaged (0.4-0.6) miles per segment. The result of congestion detection shows the proposed method is 90% accurate while has reduced computation time by 99.88%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا