ﻻ يوجد ملخص باللغة العربية
Cybersecurity is a domain where there is constant change in patterns of attack, and we need ways to make our Cybersecurity systems more adaptive to handle new attacks and categorize for appropriate action. We present a novel approach to handle the alarm flooding problem faced by Cybersecurity systems like security information and event management (SIEM) and intrusion detection (IDS). We apply a zero-shot learning method to machine learning (ML) by leveraging explanations for predictions of anomalies generated by a ML model. This approach has huge potential to auto detect alarm labels generated in SIEM and associate them with specific attack types. In this approach, without any prior knowledge of attack, we try to identify it, decipher the features that contribute to classification and try to bucketize the attack in a specific category - using explainable AI. Explanations give us measurable factors as to what features influence the prediction of a cyber-attack and to what degree. These explanations generated based on game-theory are used to allocate credit to specific features based on their influence on a specific prediction. Using this allocation of credit, we propose a novel zero-shot approach to categorize novel attacks into specific new classes based on feature influence. The resulting system demonstrated will get good at separating attack traffic from normal flow and auto-generate a label for attacks based on features that contribute to the attack. These auto-generated labels can be presented to SIEM analyst and are intuitive enough to figure out the nature of attack. We apply this approach to a network flow dataset and demonstrate results for specific attack types like ip sweep, denial of service, remote to local, etc. Paper was presented at the first Conference on Deployable AI at IIT-Madras in June 2021.
Cybersecurity is a domain where the data distribution is constantly changing with attackers exploring newer patterns to attack cyber infrastructure. Intrusion detection system is one of the important layers in cyber safety in todays world. Machine le
Zero-shot classification is a promising paradigm to solve an applicable problem when the training classes and test classes are disjoint. Achieving this usually needs experts to externalize their domain knowledge by manually specifying a class-attribu
The overarching goal of Explainable AI is to develop systems that not only exhibit intelligent behaviours, but also are able to explain their rationale and reveal insights. In explainable machine learning, methods that produce a high level of predict
Widespread deployment of the Internet enabled building of an emerging IT delivery model, i.e., cloud computing. Albeit cloud computing-based services have rapidly developed, their security aspects are still at the initial stage of development. In ord
Recent years have seen great success in the use of neural seq2seq models on the text-to-SQL task. However, little work has paid attention to how these models generalize to realistic unseen data, which naturally raises a question: does this impressive