ترغب بنشر مسار تعليمي؟ اضغط هنا

A multi-stage machine learning model on diagnosis of esophageal manometry

48   0   0.0 ( 0 )
 نشر من قبل Wenjun Kou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

High-resolution manometry (HRM) is the primary procedure used to diagnose esophageal motility disorders. Its interpretation and classification includes an initial evaluation of swallow-level outcomes and then derivation of a study-level diagnosis based on Chicago Classification (CC), using a tree-like algorithm. This diagnostic approach on motility disordered using HRM was mirrored using a multi-stage modeling framework developed using a combination of various machine learning approaches. Specifically, the framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage. In the swallow-level stage, three models based on convolutional neural networks (CNNs) were developed to predict swallow type, swallow pressurization, and integrated relaxation pressure (IRP). At the study-level stage, model selection from families of the expert-knowledge-based rule models, xgboost models and artificial neural network(ANN) models were conducted, with the latter two model designed and augmented with motivation from the export knowledge. A simple model-agnostic strategy of model balancing motivated by Bayesian principles was utilized, which gave rise to model averaging weighted by precision scores. The averaged (blended) models and individual models were compared and evaluated, of which the best performance on test dataset is 0.81 in top-1 prediction, 0.92 in top-2 predictions. This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data. Moreover, the proposed modeling framework could be easily extended to multi-modal tasks, such as diagnosis of esophageal patients based on clinical data from both HRM and functional luminal imaging probe panometry (FLIP).



قيم البحث

اقرأ أيضاً

84 - Woo Seok Lee , Junghyo Jo , 2020
Machine learning shows remarkable success for recognizing patterns in data. Here we apply the machine learning (ML) for the diagnosis of early stage diabetes, which is known as a challenging task in medicine. Blood glucose levels are tightly regulate d by two counter-regulatory hormones, insulin and glucagon, and the failure of the glucose homeostasis leads to the common metabolic disease, diabetes mellitus. It is a chronic disease that has a long latent period the complicates detection of the disease at an early stage. The vast majority of diabetics result from that diminished effectiveness of insulin action. The insulin resistance must modify the temporal profile of blood glucose. Thus we propose to use ML to detect the subtle change in the temporal pattern of glucose concentration. Time series data of blood glucose with sufficient resolution is currently unavailable, so we confirm the proposal using synthetic data of glucose profiles produced by a biophysical model that considers the glucose regulation and hormone action. Multi-layered perceptrons, convolutional neural networks, and recurrent neural networks all identified the degree of insulin resistance with high accuracy above $85%$.
This paper introduces the MCML approach for empirically studying the learnability of relational properties that can be expressed in the well-known software design language Alloy. A key novelty of MCML is quantification of the performance of and seman tic differences among trained machine learning (ML) models, specifically decision trees, with respect to entire (bounded) input spaces, and not just for given training and test datasets (as is the common practice). MCML reduces the quantification problems to the classic complexity theory problem of model counting, and employs state-of-the-art model counters. The results show that relatively simple ML models can achieve surprisingly high performance (accuracy and F1-score) when evaluated in the common setting of using training and test datasets - even when the training dataset is much smaller than the test dataset - indicating the seeming simplicity of learning relational properties. However, MCML metrics based on model counting show that the performance can degrade substantially when tested against the entire (bounded) input space, indicating the high complexity of precisely learning these properties, and the usefulness of model counting in quantifying the true performance.
There has been a surge of recent interest in learning representations for graph-structured data. Graph representation learning methods have generally fallen into three main categories, based on the availability of labeled data. The first, network emb edding (such as shallow graph embedding or graph auto-encoders), focuses on learning unsupervised representations of relational structure. The second, graph regularized neural networks, leverages graphs to augment neural network losses with a regularization objective for semi-supervised learning. The third, graph neural networks, aims to learn differentiable functions over discrete topologies with arbitrary structure. However, despite the popularity of these areas there has been surprisingly little work on unifying the three paradigms. Here, we aim to bridge the gap between graph neural networks, network embedding and graph regularization models. We propose a comprehensive taxonomy of representation learning methods for graph-structured data, aiming to unify several disparate bodies of work. Specifically, we propose a Graph Encoder Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs (e.g. GraphSage, Graph Convolutional Networks, Graph Attention Networks), and unsupervised learning of graph representations (e.g. DeepWalk, node2vec, etc) into a single consistent approach. To illustrate the generality of this approach, we fit over thirty existing methods into this framework. We believe that this unifying view both provides a solid foundation for understanding the intuition behind these methods, and enables future research in the area.
Algorithmic decision making process now affects many aspects of our lives. Standard tools for machine learning, such as classification and regression, are subject to the bias in data, and thus direct application of such off-the-shelf tools could lead to a specific group being unfairly discriminated. Removing sensitive attributes of data does not solve this problem because a textit{disparate impact} can arise when non-sensitive attributes and sensitive attributes are correlated. Here, we study a fair machine learning algorithm that avoids such a disparate impact when making a decision. Inspired by the two-stage least squares method that is widely used in the field of economics, we propose a two-stage algorithm that removes bias in the training data. The proposed algorithm is conceptually simple. Unlike most of existing fair algorithms that are designed for classification tasks, the proposed method is able to (i) deal with regression tasks, (ii) combine explanatory attributes to remove reverse discrimination, and (iii) deal with numerical sensitive attributes. The performance and fairness of the proposed algorithm are evaluated in simulations with synthetic and real-world datasets.
TensorFlow Eager is a multi-stage, Python-embedded domain-specific language for hardware-accelerated machine learning, suitable for both interactive research and production. TensorFlow, which TensorFlow Eager extends, requires users to represent comp utations as dataflow graphs; this permits compiler optimizations and simplifies deployment but hinders rapid prototyping and run-time dynamism. TensorFlow Eager eliminates these usability costs without sacrificing the benefits furnished by graphs: It provides an imperative front-end to TensorFlow that executes operations immediately and a JIT tracer that translates Python functions composed of TensorFlow operations into executable dataflow graphs. TensorFlow Eager thus offers a multi-stage programming model that makes it easy to interpolate between imperative and staged execution in a single package.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا