ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Poiseuille Flow of Phonons in Black Phosphorus

97   0   0.0 ( 0 )
 نشر من قبل Yo Machida
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The travel of heat in insulators is commonly pictured as a flow of phonons scattered along their individual trajectory. In rare circumstances, momentum-conserving collision events dominate, and thermal transport becomes hydrodynamic. One of these cases, dubbed the Poiseuille flow of phonons, can occur in a temperature window just below the peak temperature of thermal conductivity. We report on a study of heat flow in bulk black phosphorus between 0.1 and 80 K. We find a thermal conductivity showing a faster than cubic temperature dependence between 5 and 12 K. Consequently, the effective phonon mean free path shows a nonmonotonic temperature dependence at the onset of the ballistic regime, with a size-dependent Knudsen minimum. These are hallmarks of Poiseuille flow previously observed in a handful of solids. Comparing the phonon dispersion in black phosphorus and silicon, we showthat the phase space for normal scattering events in black phosphorus is much larger. Our results imply that the most important requirement for the emergence of Poiseuille flowis the facility ofmomentum exchange between acoustic phonon branches. Proximity to a structural transition can be beneficial for the emergence of this behavior in clean systems, even when they do not exceed silicon in purity.

قيم البحث

اقرأ أيضاً

Using the density functional theory of electronic structure, we compute the anisotropic dielectric response of bulk black phosphorus subject to strain. Employing the obtained permittivity tensor, we solve Maxwells equations and study the electromagne tic response of a layered structure comprising a film of black phosphorus stacked on a metallic substrate. Our results reveal that a small compressive or tensile strain, $sim 4%$, exerted either perpendicular or in the plane to the black phosphorus growth direction, efficiently controls the epsilon-near-zero response, and allows a perfect absorption tuning from low-angle of the incident beam $theta=0^circ$ to high values $thetaapprox 90^circ$ while switching the energy flow direction. Incorporating a spatially inhomogeneous strain model, we also find that for certain thicknesses of the black phosphorus, near-perfect absorption can be achieved through controlled variations of the in-plane strain. These findings can serve as guidelines for designing largely tunable perfect electromagnetic wave absorber devices.
Exfoliated black phosphorus has recently emerged as a new two-dimensional crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have potentially important applications in electronics, optoelectronics and ph otonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and the behavior of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.
Time-reversal symmetry breaking is the basic physics concept underpinning many magnetic topological phenomena such as the anomalous Hall effect (AHE) and its quantized variant. The AHE has been primarily accompanied by a ferromagnetic dipole moment, which hinders the topological quantum states and limits data density in memory devices, or by a delicate noncollinear magnetic order with strong spin decoherence, both limiting their applicability. A potential breakthrough is the recent theoretical prediction of the AHE arising from collinear antiferromagnetism in an anisotropic crystal environment. This new mechanism does not require magnetic dipolar or noncollinear fields. However, it has not been experimentally observed to date. Here we demonstrate this unconventional mechanism by measuring the AHE in an epilayer of a rutile collinear antiferromagnet RuO$_2$. The observed anomalous Hall conductivity is large, exceeding 300 S/cm, and is in agreement with the Berry phase topological transport contribution. Our results open a new unexplored chapter of time-reversal symmetry breaking phenomena in the abundant class of collinear antiferromagnetic materials.
Black phosphorus presents a very anisotropic crystal structure, making it a potential candidate for hyperbolic plasmonics, characterized by a permittivity tensor where one of the principal components is metallic and the other dielectric. Here we demo nstrate that atomically thin black phosphorus can be engineered to be a hyperbolic material operating in a broad range of the electromagnetic spectrum from the entire visible spectrum to ultraviolet. With the introduction of an optical gain, a new hyperbolic region emerges in the infrared. The character of this hyperbolic plasmon depends on the interplay between gain and loss along the two crystalline directions.
Twisted moire superlattices (TMSs) are fascinating materials with exotic physical properties. Despite tremendous studies on electronic, photonic and phononic TMSs, it has never been witnessed that TMSs can exhibit higher-order band topology. Here, we report on the experimental observation of higher-order topological states in acoustic TMSs. By introducing moire twisting in bilayer honeycomb lattices of coupled acoustic resonators, we find a regime with designed interlayer couplings where a sizable band gap with higher-order topology emerges. This higher-order topological phase host unique topological edge and corner states, which can be understood via the Wannier centers of the acoustic Bloch bands below the band gap. We confirm experimentally the higher-order band topology by characterizing the edge and corner states using acoustic pump-probe measurements. With complementary theory and experiments, our study opens a pathway toward band topology in TMSs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا