ترغب بنشر مسار تعليمي؟ اضغط هنا

Many-body localization in the interpolating Aubry-Andre-Fibonacci model

96   0   0.0 ( 0 )
 نشر من قبل Antonio \\v{S}trkalj Mr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the localization properties of a spin chain with an antiferromagnetic nearest-neighbour coupling, subject to an external quasiperiodic on-site magnetic field. The quasiperiodic modulation interpolates between two paradigmatic models, namely the Aubry-Andre and the Fibonacci models. We find that stronger many-body interactions extend the ergodic phase in the former, whereas they shrink it in the latter. Furthermore, the many-body localization transition points at the two limits of the interpolation appear to be continuously connected along the deformation. As a result, the position of the many-body localization transition depends on the interaction strength for an intermediate degree of deformation of the quasiperiodic modulation. Moreover, in the region of parameter space where the single-particle spectrum contains both localized and extended states, many-body interactions induce an anomalous effect: weak interactions localize the system, whereas stronger interactions enhance ergodicity. We map the models localization phase diagram using the decay of the quenched spin imbalance in relatively long chains. This is accomplished employing a time-dependent variational approach applied to a matrix product state decomposition of the many-body state. Our model serves as a rich playground for testing many-body localization under tunable potentials.

قيم البحث

اقرأ أيضاً

131 - Ang-Kun Wu 2021
The Aubry-Andre model is a one-dimensional lattice model for quasicrystals with localized and delocalized phases. At the localization transition point, the system displays fractal spectrum, which relates to the Hofstadter butterfly. In this work, we uncover the exact self-similarity structures in the energy spectrum. We separate the fractal structures into two parts: the fractal filling positions of gaps and the scaling of gap sizes. We show that the fractal fillings emerge for a certain type of incommensurate periodicity regardless of potential strength. However, the power-law scaling of gap sizes is characteristic for general incommensurability at the critical point of the model.
The many-body localization transition in quasiperiodic systems has been extensively studied in recent ultracold atom experiments. At intermediate quasiperiodic potential strength, a surprising Griffiths-like regime with slow dynamics appears in the a bsence of random disorder and mobility edges. In this work, we study the interacting Aubry-Andre model, a prototype quasiperiodic system, as a function of incommensurate potential strength using a novel dynamical measure, information scrambling, in a large system of 200 lattice sites. Between the thermal phase and the many-body localized phase, we find an intermediate dynamical phase where the butterfly velocity is zero and information spreads in space as a power-law in time. This is in contrast to the ballistic spreading in the thermal phase and logarithmic spreading in the localized phase. We further investigate the entanglement structure of the many-body eigenstates in the intermediate phase and find strong fluctuations in eigenstate entanglement entropy within a given energy window, which is inconsistent with the eigenstate thermalization hypothesis. Machine-learning on the entanglement spectrum also reaches the same conclusion. Our large-scale simulations suggest that the intermediate phase with vanishing butterfly velocity could be responsible for the slow dynamics seen in recent experiments.
Many-body localization (MBL) has been widely investigated for both fermions and bosons, it is, however, much less explored for anyons. Here we numerically calculate several physical characteristics related to MBL of a one-dimensional disordered anyon -Hubbard model in both localized and delocalized regions. We figure out a logarithmically slow growth of the half-chain entanglement entropy and an area-law rather than volume-law obedience for the highly excited eigenstates in the MBL phase. The adjacent energy level gap-ratio parameter is calculated and is found to exhibit a Poisson-like probability distribution in the deep MBL phase. By studying a hybridization parameter, we reveal an intriguing effect that the statistics can induce localization-delocalization transition. Several physical quantities, such as the half-chain entanglement, the adjacent energy level gap-ratio parameter, {color{black} the long-time limit of the particle imbalance}, and the critical disorder strength, are shown to be non-monotonically dependent on the anyon statistical angle. Furthermore, a feasible scheme based on the spectroscopy of energy levels is proposed for the experimental observation of these statistically related properties.
Thermalizing quantum systems are conventionally described by statistical mechanics at equilibrium. However, not all systems fall into this category, with many body localization providing a generic mechanism for thermalization to fail in strongly diso rdered systems. Many-body localized (MBL) systems remain perfect insulators at non-zero temperature, which do not thermalize and therefore cannot be described using statistical mechanics. In this Colloquium we review recent theoretical and experimental advances in studies of MBL systems, focusing on the new perspective provided by entanglement and non-equilibrium experimental probes such as quantum quenches. Theoretically, MBL systems exhibit a new kind of robust integrability: an extensive set of quasi-local integrals of motion emerges, which provides an intuitive explanation of the breakdown of thermalization. A description based on quasi-local integrals of motion is used to predict dynamical properties of MBL systems, such as the spreading of quantum entanglement, the behavior of local observables, and the response to external dissipative processes. Furthermore, MBL systems can exhibit eigenstate transitions and quantum orders forbidden in thermodynamic equilibrium. We outline the current theoretical understanding of the quantum-to-classical transition between many-body localized and ergodic phases, and anomalous transport in the vicinity of that transition. Experimentally, synthetic quantum systems, which are well-isolated from an external thermal reservoir, provide natural platforms for realizing the MBL phase. We review recent experiments with ultracold atoms, trapped ions, superconducting qubits, and quantum materials, in which different signatures of many-body localization have been observed. We conclude by listing outstanding challenges and promising future research directions.
It is typically assumed that disorder is essential to realize Anderson localization. Recently, a number of proposals have suggested that an interacting, translation invariant system can also exhibit localization. We examine these claims in the contex t of a one-dimensional spin ladder. At intermediate time scales, we find slow growth of entanglement entropy consistent with the phenomenology of many-body localization. However, at longer times, all finite wavelength spin polarizations decay in a finite time, independent of system size. We identify a single length scale which parametrically controls both the eventual spin transport times and the divergence of the susceptibility to spin glass ordering. We dub this long pre-thermal dynamical behavior, intermediate between full localization and diffusion, quasi-many body localization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا