ﻻ يوجد ملخص باللغة العربية
We note that a strongly minimal Steiner $k$-Steiner system $(M,R)$ from (Baldwin-Paolini 2020) can be `coordinatized in the sense of (Gantner-Werner 1975) by a quasigroup if $k$ is a prime-power. But for the basic construction this coordinatization is never definable in $(M,R)$. Nevertheless, by refining the construction, if $k$ is a prime power there is a $(2,k)$-variety of quasigroups which is strongly minimal and definably coordinatizes a Steiner $k$-system.
Let $M$ be strongly minimal and constructed by a `Hrushovski construction. If the Hrushovski algebraization function $mu$ is in a certain class ${mathcal T}$ ($mu$ triples) we show that for independent $I$ with $|I| >1$, ${rm dcl}^*(I)= emptyset$ (*
The aim of this paper is to make a connection between design theory and algebraic geometry/commutative algebra. In particular, given any Steiner System $S(t,n,v)$ we associate two ideals, in a suitable polynomial ring, defining a Steiner configuratio
Among other results, we prove the following theorem about Steiner minimal trees in $d$-dimensional Euclidean space: if two finite sets in $mathbb{R}^d$ have unique and combinatorially equivalent Steiner minimal trees, then there is a homotopy between
Let $X$ be a $v$-set, $B$ a set of 3-subsets (triples) of $X$, and $B^+cupB^-$ a partition of $B$ with $|B^-|=s$. The pair $(X,B)$ is called a simple signed Steiner triple system, denoted by ST$(v,s)$, if the number of occurrences of every 2-subset o
A standard tool for classifying the complexity of equivalence relations on $omega$ is provided by computable reducibility. This reducibility gives rise to a rich degree structure. The paper studies equivalence relations, which induce minimal degrees