ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to make a connection between design theory and algebraic geometry/commutative algebra. In particular, given any Steiner System $S(t,n,v)$ we associate two ideals, in a suitable polynomial ring, defining a Steiner configuration of points and its Complement. We focus on the latter, studying its homological invariants, such as Hilbert Function and Betti numbers. We also study symbolic and regular powers associated to the ideal defining a Complement of a Steiner configuration of points, finding its Waldschmidt constant, regularity, bounds on its resurgence and asymptotic resurgence. We also compute the parameters of linear codes associated to any Steiner configuration of points and its Complement.
Given a homogeneous ideal $I subseteq k[x_0,dots,x_n]$, the Containment problem studies the relation between symbolic and regular powers of $I$, that is, it asks for which pair $m, r in mathbb{N}$, $I^{(m)} subseteq I^r$ holds. In the last years, sev
We present a direct and fairly simple proof of the following incidence bound: Let $P$ be a set of $m$ points and $L$ a set of $n$ lines in ${mathbb R}^d$, for $dge 3$, which lie in a common algebraic two-dimensional surface of degree $D$ that does no
In this work we study $k$-type uniform Steiner bundles, being $k$ the lowest degree of the splitting. We prove sharp upper and lower bounds for the rank in the case $k=1$ and moreover we give families of examples for every allowed possible rank and e
A portrait is a combinatorial model for a discrete dynamical system on a finite set. We study the geometry of portrait moduli spaces, whose points correspond to equivalence classes of point configurations on the affine line for which there exist poly
This is a report on a joint project in experimental mathematics with Jonas Bergstrom and Carel Faber where we obtain information about modular forms by counting curves over finite fields.