ﻻ يوجد ملخص باللغة العربية
We have obtained new observations of the absorption system at $z_mathrm{abs}=0.48$ toward QSO Q0454-220, which we use to constrain its chemical and physical conditions. The system features metal-enriched gas and previously unknown low-metallicity gas detected $sim 200 , mathrm{km , s^{-1}}$ blueward of the metal-enriched gas. The low-metallicity gas is detected in multiple Lyman series lines but is not detected in any metal lines. Our analysis includes low-ionization (e.g., Fe II, Mg II) metal lines, high-ionization (e.g., C IV, O VI, N V) metal lines, and several Lyman series lines. We use new UV spectra taken with HST/COS along with data taken from HST/STIS, Keck/HIRES, and VLT/UVES. We find that the absorption system can be explained with a photoionized low-ionization phase with $mathrm{[Fe/H]} sim -0.5$ and $n_mathrm{H} sim 10^{-2.3} , mathrm{cm}^{-3}$, a photoionized high-ionization phase with a conservative lower limit of $-3.3 < mathrm{[Fe/H]}$ and $n_mathrm{H} sim 10^{-3.8} , mathrm{cm}^{-3}$, and a low-metallicity component with a conservative upper limit of $mathrm{[Fe/H]} < -2.5$ that may be photoionized or collisionally ionized. We suggest that the low-ionization phase may be due to cold-flow accretion via large-scale filamentary structure or due to recycled accretion while the high-ionization phase is the result of ancient outflowing material from a nearby galaxy. The low-metallicity component may come from pristine accretion. The velocity spread and disparate conditions among the absorption systems components suggest a combination of gas arising near galaxies along with gas arising from intergroup material.
We present an analysis of the metallicity distribution of the dense circumgalactic medium (CGM) of galaxies at 0.1 < z < 1.1 as probed by partial Lyman limit systems (pLLSs, 16.1 < log N(H I) < 17.2) and LLSs (17.2 < log N(H I) < 17.7 in our sample).
We report ALMA observations of the most massive (star forming) galaxy in the redshift range 3<z<4 within the whole GOODS-S field. We detect a large elongated structure of molecular gas around the massive primeval galaxy, traced by the CO(4-3) emissio
One of the greatest challenges to theoretical models of massive galaxy formation is the regulation of star formation at early times. The relative roles of molecular gas expulsion, depletion, and stabilization are uncertain as direct observational con
In order to construct a sample of ultra-luminous infrared galaxies (ULIRGs, with infrared luminosity, $L_{rm IR} > 10^{12}$ L$_{odot}$) at 0.5 < z < 1, we are conducting an optical follow-up program for bright 90-$mu$m FIR sources with a faint optica
We present Atacama Large Millimeter/submillimeter Array (ALMA) Band 5 observations of a galaxy at $z=1.91$, GDS24569, in search of molecular gas in its vicinity via the [C I] $^3$P$_1$-$^3$P$_0$ line. GDS24569 is a massive ($log M_*/M_odot=11$) passi