ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-metallicity Absorbers Account for Half of the Dense Circumgalactic Gas at z < 1

71   0   0.0 ( 0 )
 نشر من قبل Christopher Wotta
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of the metallicity distribution of the dense circumgalactic medium (CGM) of galaxies at 0.1 < z < 1.1 as probed by partial Lyman limit systems (pLLSs, 16.1 < log N(H I) < 17.2) and LLSs (17.2 < log N(H I) < 17.7 in our sample). The new H I-selected sample, drawn from our HST COS G140L snapshot survey of 61 QSOs, has 20 pLLSs and 10 LLSs. Combined with our previous survey, we have a total of 44 pLLSs and 11 LLSs. We find that the metallicity distribution of the pLLSs is bimodal at z < 1, with a minimum at [X/H] = -1. The low-metallicity peak comprises (57 +/- 8)% of the pLLSs and is centered at [X/H] ~ -1.87 (1.3% solar metallicity), while the high-metallicity peak is centered at [X/H] ~ -0.32 (48% solar metallicity). Although the sample of LLSs is still small, there is some evidence that the metallicity distributions of the LLSs and pLLSs are different, with a far lower fraction of very metal-poor ([X/H] < -1.4) LLSs than pLLSs. The fraction of LLSs with [X/H] < -1 is similar to that found in pLLSs (~56%). However, higher H I column density absorbers (log N(H I) > 19.0) show a much lower fraction of metal-poor gas; therefore, the metallicity distribution of gas in and around galaxies depends sensitively on N(H I) at z < 1. We interpret the high-metallicity ([X/H] > -1) pLLSs and LLSs as arising in outflows, recycling winds, and tidally-stripped gas around galaxies. The low-metallicity pLLSs and LLSs imply that the CGM of z < 1 galaxies is also host to a substantial mass of cool, dense, low-metallicity gas that may ultimately accrete onto the galaxies.



قيم البحث

اقرأ أيضاً

We have obtained new observations of the absorption system at $z_mathrm{abs}=0.48$ toward QSO Q0454-220, which we use to constrain its chemical and physical conditions. The system features metal-enriched gas and previously unknown low-metallicity gas detected $sim 200 , mathrm{km , s^{-1}}$ blueward of the metal-enriched gas. The low-metallicity gas is detected in multiple Lyman series lines but is not detected in any metal lines. Our analysis includes low-ionization (e.g., Fe II, Mg II) metal lines, high-ionization (e.g., C IV, O VI, N V) metal lines, and several Lyman series lines. We use new UV spectra taken with HST/COS along with data taken from HST/STIS, Keck/HIRES, and VLT/UVES. We find that the absorption system can be explained with a photoionized low-ionization phase with $mathrm{[Fe/H]} sim -0.5$ and $n_mathrm{H} sim 10^{-2.3} , mathrm{cm}^{-3}$, a photoionized high-ionization phase with a conservative lower limit of $-3.3 < mathrm{[Fe/H]}$ and $n_mathrm{H} sim 10^{-3.8} , mathrm{cm}^{-3}$, and a low-metallicity component with a conservative upper limit of $mathrm{[Fe/H]} < -2.5$ that may be photoionized or collisionally ionized. We suggest that the low-ionization phase may be due to cold-flow accretion via large-scale filamentary structure or due to recycled accretion while the high-ionization phase is the result of ancient outflowing material from a nearby galaxy. The low-metallicity component may come from pristine accretion. The velocity spread and disparate conditions among the absorption systems components suggest a combination of gas arising near galaxies along with gas arising from intergroup material.
Stars form out of the densest parts of molecular clouds. Far-IR emission can be used to estimate the Star Formation Rate (SFR) and high dipole moment molecules, typically HCN, trace the dense gas. A strong correlation exists between HCN and Far-IR em ission, with the ratio being nearly constant, over a large range of physical scales. A few recent observations have found HCN to be weak with respect to the Far-IR and CO in subsolar metallicity (low-Z) objects. We present observations of the Local Group galaxies M33, IC10, and NGC6822 with the IRAM 30meter and NRO 45m telescopes, greatly improving the sample of low-Z galaxies observed. HCN, HCO$^+$, CS, C$_2$H, and HNC have been detected. Compared to solar metallicity galaxies, the Nitrogen-bearing species are weak (HCN, HNC) or not detected (CN, HNCO, N$_2$H$^+$) relative to Far-IR or CO emission. HCO$^+$ and C$_2$H emission is normal with respect to CO and Far-IR. While $^{13}$CO is the usual factor 10 weaker than $^{12}$CO, C$^{18}$O emission was not detected down to very low levels. Including earlier data, we find that the HCN/HCO$^+$ ratio varies with metallicity (O/H) and attribute this to the sharply decreasing Nitrogen abundance. The dense gas fraction, traced by the HCN/CO and HCO$^+$/CO ratios, follows the SFR but in the low-Z objects the HCO$^+$ is much easier to measure. Combined with larger and smaller scale measurements, the HCO$^+$ line appears to be an excellent tracer of dense gas and varies linearly with the SFR for both low and high metallicities.
122 - N. Lehner , J.C. Howk , T.M. Tripp 2013
We assess the metal content of the cool (10^4 K) circumgalactic medium (CGM) about galaxies at z<1 using an H I-selected sample of 28 Lyman limit systems (LLS, defined here as absorbers with 16.2<log N(H I)<18.5) observed in absorption against backgr ound QSOs by the Cosmic Origins Spectrograph on-board the Hubble Space Telescope. The N(H I) selection avoids metallicity biases inherent in many previous studies of the low-redshift CGM. We compare the column densities of weakly ionized metal species (e.g., O II, Si II, Mg II) to N(H I) in the strongest H I component of each absorber. We find that the metallicity distribution of the LLS (and hence the cool CGM) is bimodal with metal-poor and metal-rich branches peaking at [X/H]=-1.6 and -0.3 (or about 2.5% and 50% solar metallicities). The cool CGM probed by these LLS is predominantly ionized. The metal-rich branch of the population likely traces winds, recycled outflows, and tidally stripped gas; the metal-poor branch has properties consistent with cold accretion streams thought to be a major source of fresh gas for star forming galaxies. Both branches have a nearly equal number of absorbers. Our results thus demonstrate there is a significant mass of previously-undiscovered cold metal-poor gas and confirm the presence of metal enriched gas in the CGM of z<1 galaxies.
We report ALMA observations of the most massive (star forming) galaxy in the redshift range 3<z<4 within the whole GOODS-S field. We detect a large elongated structure of molecular gas around the massive primeval galaxy, traced by the CO(4-3) emissio n, and extended over 40 kpc. We infer a mass of the large gaseous structure of Mgas~2-6x10^11 Msun. About 60% of this mass is not directly associated with either the central galaxy or its two lower mass satellites. The CO extended structure is also detected in continuum thermal emission. The kinematics of the molecular gas shows the presence of different components, which cannot be ascribed to simple rotation. Furthermore, on even larger scales, we detect nine additional CO systems within a radius of 250 kpc from the massive galaxy and mostly distributed in the same direction as the CO elongated structure found in the central 40 kpc. The stacked images of these CO systems show detections in the thermal continuum and in the X-rays, suggesting that these systems are forming stars at a rate of 30-120 Msun/yr. We suggest that the extended gas structure, combined with its kinematic properties, and the gas rich star forming systems detected on larger scales, are tracing the inner and densest regions of large scale accreting streams, feeding the central massive galaxy. These results corroborate models of galaxy formation, in which accreting streams are clumpy and undergo some star formation (hence enriching the streams with metals) even before accreting onto the central galaxy.
We present Atacama Large Millimeter/submillimeter Array observations of CO lines and dust continuum emission of the source RCSGA 032727--132609, a young $z=1.7$ low-metallicity starburst galaxy. The CO(3-2) and CO(6-5) lines, and continuum at rest-fr ame $450,mu m$ are detected and show a resolved structure in the image plane. We use the corresponding lensing model to obtain a source plane reconstruction of the detected emissions revealing intrinsic flux density of $S_{450,mu m}=23.5_{-8.1}^{+26.8}$ $mu$Jy and intrinsic CO luminosities $L_{rm CO(3-2)}=2.90_{-0.23}^{+0.21}times10^{8}$ ${rm K,km,s^{-1},pc^{2}}$ and $L_{rm CO(6-5)}=8.0_{-1.3}^{+1.4}times10^{7}$ ${rm K,km,s^{-1},pc^{2}}$. We used the resolved properties in the source plane to obtain molecular gas and star-formation rate surface densities of $Sigma_{rm H2}=16.2_{-3.5}^{+5.8},{rm M}_{odot},{rm pc}^{-2}$ and $Sigma_{rm SFR}=0.54_{-0.27}^{+0.89},{rm M}_{odot},{rm yr}^{-1},{rm kpc}^{-2}$ respectively. The intrinsic properties of RCSGA 032727--132609 show an enhanced star-formation activity compared to local spiral galaxies with similar molecular gas densities, supporting the ongoing merger-starburst phase scenario. RCSGA 032727--132609 also appears to be a low--density starburst galaxy similar to local blue compact dwarf galaxies, which have been suggested as local analogs to high-redshift low-metallicity starburst systems. Finally, the CO excitation level in the galaxy is consistent with having the peak at ${rm J}sim5$, with a higher excitation concentrated in the star-forming clumps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا