ترغب بنشر مسار تعليمي؟ اضغط هنا

Voltage Controlled Hubbard Spin Transistor

38   0   0.0 ( 0 )
 نشر من قبل Rozhin Yousefjani
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transistors are key elements for enabling computational hardware in both classical and quantum domains. Here, we propose a voltage-gated spin transistor using itinerant electrons in the Hubbard model which acts at the level of single electron spins. Going beyond classical spintronics, it enables the controlling of the flow of quantum information between distant spin qubits. The transistor has two modes of operation, open and closed, which are realized by two different charge configurations in the gate of the transistor. In the closed mode, the spin information between source and drain is blocked while in the open mode we have free spin information exchange. The switching between the modes takes place within a fraction of the operation time which allows for several subsequent operations within the coherence time of the transistor. The system shows good resilience against thermal fluctuations and dephasing and opens up a practical application for quantum dot arrays.

قيم البحث

اقرأ أيضاً

We propose and analyze a scheme for conditional state transfer in a Heisenberg $XXZ$ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain r esults in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also present a possible realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions.
The fundamental property of most single-electron devices with quasicontinuous quasiparticle spectrum on the island is the periodicity of their transport characteristics in the gate voltage. This property is robust even with respect to placing the fer roelectric insulators in the source and drain tunnel junctions. We show that placing the ferroelectric inside the gate capacitance breaks this periodicity. The current-voltage characteristics of this SET strongly depends on the ferroelectric polarization and shows the giant memory-effect even for negligible ferroelectric hysteresis making this device promising for memory applications.
We design and analyze a solid state qubit based on electron spin and controlled by electrical means. The coded qubit is composed of a three-electron complex in three tunable gated quantum dots. The two logical states of a qubit, |0L> and |1L>, reside in a degenerate subspace of total spin S=1/2 states. We demonstrate how applying voltages to specific gates changes the one-electron properties of the structure, and show how electron-electron interaction translates these changes into the manipulation of the two lowest energy states of the three-electron complex.
We show that polaritons in an array of interacting micro-cavities with strong atom-photon coupling can form a two-component Bose-Hubbard model. Both polariton species are thereby protected against spontaneous emission as their atomic part is stored i n two ground states of the atoms. The parameters of the effective model can be tuned via the driving strength of external lasers. We also describe a method to measure the number statistics in one cavity for each polariton species independently.
Optical control of exciton fluxes is realized for indirect excitons in a crossed-ramp excitonic device. The device demonstrates experimental proof of principle for all-optical excitonic transistors with a high ratio between the excitonic signal at th e optical drain and the excitonic signal due to the optical gate. The device also demonstrates experimental proof of principle for all-optical excitonic routers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا