ﻻ يوجد ملخص باللغة العربية
Coarse structural nested mean models are used to estimate treatment effects from longitudinal observational data. Coarse structural nested mean models lead to a large class of estimators. It turns out that estimates and standard errors may differ considerably within this class. We prove that, under additional assumptions, there exists an explicit solution for the optimal estimator within the class of coarse structural nested mean models. Moreover, we show that even if the additional assumptions do not hold, this optimal estimator is doubly-robust: it is consistent and asymptotically normal not only if the model for treatment initiation is correct, but also if a certain outcome-regression model is correct. We compare the optimal estimator to some naive choices within the class of coarse structural nested mean models in a simulation study. Furthermore, we apply the optimal and naive estimators to study how the CD4 count increase due to one year of antiretroviral treatment (ART) depends on the time between HIV infection and ART initiation in recently infected HIV infected patients. Both in the simulation study and in the application, the use of optimal estimators leads to substantial increases in precision.
The cross-classified sampling design consists in drawing samples from a two-dimension population, independently in each dimension. Such design is commonly used in consumer price index surveys and has been recently applied to draw a sample of babies i
This paper focuses on the time series generated by the event counts of stationary Hawkes processes. When the exact locations of points are not observed, but only counts over time intervals of fixed size, existing methods of estimation are not applica
We propose a Bayesian approach, called the posterior spectral embedding, for estimating the latent positions in random dot product graphs, and prove its optimality. Unlike the classical spectral-based adjacency/Laplacian spectral embedding, the poste
This paper studies the generalization of the targeted minimum loss-based estimation (TMLE) framework to estimation of effects of time-varying interventions in settings where both interventions, covariates, and outcome can happen at subject-specific t
We consider high-dimensional measurement errors with high-frequency data. Our focus is on recovering the covariance matrix of the random errors with optimality. In this problem, not all components of the random vector are observed at the same time an