ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling

142   0   0.0 ( 0 )
 نشر من قبل Jose Manuel Chavez Boggio
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonlinear Kerr micro-resonators have enabled fundamental breakthroughs in the understanding of dissipative solitons, as well as in their application to optical frequency comb generation. However, the conversion efficiency of the pump power into a soliton frequency comb typically remains below a few percent. We introduce a hybrid Mach-Zehnder ring resonator geometry, consisting of a micro-ring resonator embedded in an additional cavity with twice the optical path length of the ring. The resulting interferometric back coupling enables to achieve an unprecedented control of the pump depletion: pump-to-frequency comb conversion efficiencies of up to 98% of the usable power is experimentally demonstrated with a soliton crystal comb. We assess the robustness of the proposed on-chip geometry by generating a large variety of dissipative Kerr soliton combs, which require a lower amount of pump power to be accessed, when compared with an isolated micro-ring resonator with identical parameters. Micro-resonators with feedback enable accessing new regimes of coherent soliton comb generation, and are well suited for comb applications in astronomy, spectroscopy and telecommunications.



قيم البحث

اقرأ أيضاً

Dissipative Kerr cavity solitons (DKSs) are localized particle-like wave packets that have attracted peoples great interests in the past decades. Besides being an excellent candidate for studying nonlinear physics, DKSs can also enable the generation of broadband frequency combs which have revolutionized a wide range of applications. The formation of DKSs are generally explained by a double balance mechanism. The group velocity dispersion is balanced by the Kerr effect; and the cavity loss is compensated by the parametric gain. Here, we show that DKSs can emerge through the interplay between dispersive loss and Kerr gain, without the participation of group velocity dispersion. By incorporating rectangular gate spectral filtering in a zero-dispersion coherently driven Kerr cavity, we demonstrate the generation of Nyquist-pulse-like solitons with unprecedented ultra-flat spectra in the frequency domain. The discovery of pure dissipation enabled solitons reveals new insights into the cavity soliton dynamics, and provides a useful tool for spectral tailoring of Kerr frequency combs.
Aluminum nitride is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high quality factor aluminum nitride micro-ring resonators integrated on silicon substrates. By engin eering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, frequency combs are generated with a single wavelength continuous-wave pump laser. The Kerr coefficient (n2) of aluminum nitride is further extracted from our experimental results.
Kerr microresonators driven in the normal dispersion regime typically require the presence of localized dispersion perturbations, such as those induced by avoided mode crossings, to initiate the formation of optical frequency combs. In this work, we experimentally demonstrate that this requirement can be lifted by driving the resonator with a pulsed pump source. We also show that controlling the desynchronization between the pump repetition rate and the cavity free-spectral range (FSR) provides a simple mechanism to tune the center frequency of the output comb. Using a fiber mini-resonator with a radius of only 6 cm we experimentally present spectrally flat combs with a bandwidth of 3 THz whose center frequency can be tuned by more than 2 THz. By driving the cavity at harmonics of its 0.54 GHz FSR, we are able to generate combs with line spacings selectable between 0.54 and 10.8 GHz. The ability to tune both the center frequency and frequency spacing of the output comb highlights the flexibility of this platform. Additionally, we demonstrate that under conditions of large pump-cavity desynchronization, the same cavity also supports a new form of Raman-assisted anomalous dispersion cavity soliton.
82 - Zhe Kang , Feng Li , Jinhui Yuan 2017
Kerr soliton frequency comb generation in monolithic microresonators recently attracted great interests as it enables chip-scale few-cycle pulse generation at microwave rates with smooth octave-spanning spectra for self-referencing. Such versatile pl atform finds significant applications in dual-comb spectroscopy, low-noise optical frequency synthesis, coherent communication systems, etc. However, it still remains challenging to straightforwardly and deterministically generate and sustain the single-soliton state in microresonators. In this paper, we propose and theoretically demonstrate the excitation of single-soliton Kerr frequency comb by seeding the continuous-wave driven nonlinear microcavity with a pulsed trigger. Unlike the mostly adopted frequency tuning scheme reported so far, we show that an energetic single shot pulse can trigger the single-soliton state deterministically without experiencing any unstable or chaotic states. Neither the pump frequency nor the cavity resonance is required to be tuned. The generated mode-locked single-soliton Kerr comb is robust and insensitive to perturbations. Even when the thermal effect induced by the absorption of the intracavity light is taken into account, the proposed single pulse trigger approach remains valid without requiring any thermal compensation means.
We report the first demonstration of thermally controlled soliton modelocked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systemati c and repeatable pathway to single- and multi-soliton modelocked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of modelocked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا