ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the gravitational bending angle due to the Casimir wormholes, which consider the Casimir energy as the source. Furthermore, some of these Casimir wormholes regard Generalized Uncertainty Principle (GUP) corrections of Casimir energy. We use the Ishihara method for the Jacobi metric, which allows us to study the bending angle of light and massive test particles for finite distances. Beyond the uncorrected Casimir source, we consider many GUP corrections, namely: the Kempf, Mangano and Mann (KMM) model, the Detournay, Gabriel and Spindel (DGS) model, and the so-called type II model for the GUP principle. We also find the deflection angle of light and massive particles in the case of the receiver and the source are far away from the lens. In this case, we also compute the optical scalars: convergence and shear for these Casimir wormholes as a gravitational weak lens.
We discuss a possible extension of calculations of the bending angle of light in a static, spherically symmetric and asymptotically flat spacetime to a non-asymptotically flat case. We examine a relation between the bending angle of light and the Gau
Continuing work initiated in an earlier publication [Ishihara, Suzuki, Ono, Kitamura, Asada, Phys. Rev. D {bf 94}, 084015 (2016) ], we discuss a method of calculating the bending angle of light in a static, spherically symmetric and asymptotically fl
This work investigates the influence of the Lorentz symmetry breaking in the bending angle of massive particles and light for bumblebee black hole solutions. The solutions analyzed break the Lorentz symmetry due to a non-zero vacuum expectation value
By using the Gauss-Bonnet theorem, the bending angle of light in a static, spherically symmetric and asymptotically flat spacetime has been recently discussed, especially by taking account of the finite distance from a lens object to a light source a
In this paper we show that wormholes in (2+1) dimensions (3-D) cannot be sourced solely by both Casimir energy and tension, differently from what happens in a 4-D scenario, in which case it has been shown recently, by the direct computation of the ex