ﻻ يوجد ملخص باللغة العربية
This work investigates the influence of the Lorentz symmetry breaking in the bending angle of massive particles and light for bumblebee black hole solutions. The solutions analyzed break the Lorentz symmetry due to a non-zero vacuum expectation value of the bumblebee field. We use the Ishihara method, which allows us to study the bending angle of light for finite distances, and it is applicable to non-asymptotically flat spacetimes when considering the receiver viewpoint. In order to analyze the deflection of massive particles, we systematize the Ishihara method for its application in the Jacobi metric. This systematization allows the study of the deflection angle of massive particles using the Gauss-Bonnet theorem. We consider two backgrounds: the first was found by Bertolami et al. and is asymptotically flat. The second was found recently by Maluf et al. and is not asymptotically flat due to an effective cosmological constant.
With the advent of gravitational wave astronomy and first pictures of the shadow of the central black hole of our milky way, theoretical analyses of black holes (and compact objects mimicking them sufficiently closely) have become more important than
In this paper, we systematically study spherically symmetric static spacetimes in the framework of Einstein-aether theory, and pay particular attention to the existence of black holes (BHs). In the present studies we first clarify several subtle issu
We investigate the quasinormal modes of a class of static and spherically symmetric black holes with the derivative coupling. The derivative coupling has rarely been paid attention to the study of black hole quasinormal modes. Specifically, we study
In the context of the dynamics and stability of black holes in modified theories of gravity, we derive the Teukolsky equations for massless fields of all spins in general spherically-symmetric and static metrics. We then compute the short-ranged pote
We present a solution of Einstein equations with quintessential matter surrounding a $d$-dimensional black hole, whose asymptotic structures are determined by the state of the quintessential matter. We examine the thermodynamics of this black hole an