ﻻ يوجد ملخص باللغة العربية
We propose a novel technique for speeding up the self-learning Monte Carlo method applied to the single-site impurity model. For the case where the effective Hamiltonian is expressed by polynomial functions of differences of imaginary-time coordinate between vertices, we can remove the dependence of CPU time on the number of vertices, $n$, by saving and updating some coefficients for each insertion and deletion process. As a result, the total cost for a single-step update is drastically reduced from $O(nm)$ to $O(m^2)$ with $m$ being the order of polynomials in the effective Hamiltonian. Even for the existing algorithms, in which the absolute value is used instead of the difference as the variable of polynomial functions, we can limit the CPU time for a single step of Monte Carlo update to $O(m^2 + m log n)$ with the help of balanced binary search trees. We demonstrate that our proposed algorithm with only logarithmic $n$-dependence achieves an exponential speedup from the existing methods, which suffer from severe performance issues at low temperatures.
We derive equations of motion for Greens functions of the multi-orbital Anderson impurity model by differentiating symmetrically with respect to all time arguments. The resulting equations relate the one- and two-particle Greens function to correlato
We present a continuous-time Monte Carlo method for quantum impurity models, which combines a weak-coupling expansion with an auxiliary-field decomposition. The method is considerably more efficient than Hirsch-Fye and free of time discretization err
We derive the equations for calculating the high-frequency asymptotics of the local two-particle vertex function for a multi-orbital impurity model. These relate the asymptotics for a general local interaction to equal-time two-particle Greens functi
We describe an open-source implementation of the continuous-time interaction-expansion quantum Monte Carlo method for cluster-type impurity models with onsite Coulomb interactions and complex Weiss functions. The code is based on the ALPS libraries.
In the present paper, we present an efficient continuous-time quantum Monte Carlo impurity solver with high acceptance rate at low temperature for multi-orbital quantum impurity models with general interaction. In this hybridization expansion impurit