ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetric Improved Estimators for Continuous-time Quantum Monte Carlo

112   0   0.0 ( 0 )
 نشر من قبل Josef Kaufmann
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive equations of motion for Greens functions of the multi-orbital Anderson impurity model by differentiating symmetrically with respect to all time arguments. The resulting equations relate the one- and two-particle Greens function to correlators of up to six particles at four times. As an application we consider continuous-time quantum Monte Carlo simulations in the hybridization expansion, which hitherto suffered from notoriously high noise levels at large Matsubara frequencies. Employing the derived symmetric improved estimators overcomes this problem.



قيم البحث

اقرأ أيضاً

We present a continuous-time Monte Carlo method for quantum impurity models, which combines a weak-coupling expansion with an auxiliary-field decomposition. The method is considerably more efficient than Hirsch-Fye and free of time discretization err ors, and is particularly useful as impurity solver in large cluster dynamical mean field theory (DMFT) calculations.
163 - Ruixiao Cao , Synge Todo 2021
We propose a novel technique for speeding up the self-learning Monte Carlo method applied to the single-site impurity model. For the case where the effective Hamiltonian is expressed by polynomial functions of differences of imaginary-time coordinate between vertices, we can remove the dependence of CPU time on the number of vertices, $n$, by saving and updating some coefficients for each insertion and deletion process. As a result, the total cost for a single-step update is drastically reduced from $O(nm)$ to $O(m^2)$ with $m$ being the order of polynomials in the effective Hamiltonian. Even for the existing algorithms, in which the absolute value is used instead of the difference as the variable of polynomial functions, we can limit the CPU time for a single step of Monte Carlo update to $O(m^2 + m log n)$ with the help of balanced binary search trees. We demonstrate that our proposed algorithm with only logarithmic $n$-dependence achieves an exponential speedup from the existing methods, which suffer from severe performance issues at low temperatures.
We derive the equations for calculating the high-frequency asymptotics of the local two-particle vertex function for a multi-orbital impurity model. These relate the asymptotics for a general local interaction to equal-time two-particle Greens functi ons, which we sample using continuous-time quantum Monte Carlo simulations with a worm algorithm. As specific examples we study the single-orbital Hubbard model and the three $t_{2g}$ orbitals of SrVO$_3$ within dynamical mean field theory (DMFT). We demonstrate how the knowledge of the high-frequency asymptotics reduces the statistical uncertainties of the vertex and further eliminates finite box size effects. The proposed method benefits the calculation of non-local susceptibilities in DMFT and diagrammatic extensions of DMFT.
We describe an open-source implementation of the continuous-time interaction-expansion quantum Monte Carlo method for cluster-type impurity models with onsite Coulomb interactions and complex Weiss functions. The code is based on the ALPS libraries.
In the present paper, we present an efficient continuous-time quantum Monte Carlo impurity solver with high acceptance rate at low temperature for multi-orbital quantum impurity models with general interaction. In this hybridization expansion impurit y solver, the imaginary time evolution operator for the high energy multiplets, which decays very rapidly with the imaginary time, is approximated by a probability normalized $delta$-function. As the result, the virtual charge fluctuations of $f^{n}rightarrow f^{npm1}$ are well included on the same footing without applying Schrieffer-Wolff transformation explicitly. As benchmarks, our algorithm perfectly reproduces the results for both Coqblin-Schriffeer and Kondo lattice models obtained by CT-J method developed by Otsuki {it et al}. Furthermore, it allows capturing low energy physics of heavy-fermion materials directly without fitting the exchange coupling $J$ in the Kondo model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا