ﻻ يوجد ملخص باللغة العربية
We address the exploitation of an optical parametric oscillator (OPO) in the task of mitigating, at least partially, phase noise produced by phase diffusion. In particular, we analyze two scenarios where phase diffusion is typically present. The first one is the estimation of the phase of an optical field, while the second involves a quantum communication protocol based on phase shift keying. In both cases, we prove that an OPO may lead to a partial or full compensation of the noise.
We study the robustness of geometric phase in the presence of parametric noise. For that purpose we consider a simple case study, namely a semiclassical particle which moves adiabatically along a closed loop in a static magnetic field acquiring the D
A new device to generate polarization-entangled light in the continuous variable regime is introduced. It consists of an Optical Parametric Oscillator with two type-II phase-matched non-linear crystals orthogonally oriented, associated with birefring
We report the first experimental observation of bright EPR beams produced by a type-II optical parametric oscillator operating above threshold at frequency degeneracy. The degenerate operation is obtained by introducing a birefringent plate inside th
The influence of the phase fluctuation of the pump laser on the phase-correlation between the signal and idler modes of the output fields from as non-degenerate optical parametric oscillator operating above oscillation threshold was experimentally in
We present the first measurement of two-mode squeezing between the twin beams produced by a doubly resonant optical parameter oscillator (OPO) in above threshold operation, based on parametric amplification by non degenerate four wave mixing with rub