ﻻ يوجد ملخص باللغة العربية
X-ray scattering experiments using Free Electron Lasers (XFELs) are a powerful tool to determine the molecular structure and function of unknown samples (such as COVID-19 viral proteins). XFEL experiments are a challenge to computing in two ways: i) due to the high cost of running XFELs, a fast turnaround time from data acquisition to data analysis is essential to make informed decisions on experimental protocols; ii) data collection rates are growing exponentially, requiring new scalable algorithms. Here we report our experiences analyzing data from two experiments at the Linac Coherent Light Source (LCLS) during September 2020. Raw data were analyzed on NERSCs Cori XC40 system, using the Superfacility paradigm: our workflow automatically moves raw data between LCLS and NERSC, where it is analyzed using the software package CCTBX. We achieved real time data analysis with a turnaround time from data acquisition to full molecular reconstruction in as little as 10 min -- sufficient time for the experiments operators to make informed decisions. By hosting the data analysis on Cori, and by automating LCLS-NERSC interoperability, we achieved a data analysis rate which matches the data acquisition rate. Completing data analysis with 10 mins is a first for XFEL experiments and an important milestone if we are to keep up with data collection trends.
While experiments on fusion plasmas produce high-dimensional data time series with ever increasing magnitude and velocity, data analysis has been lagging behind this development. For example, many data analysis tasks are often performed in a manual,
Performance tools for forthcoming heterogeneous exascale platforms must address two principal challenges when analyzing execution measurements. First, measurement of extreme-scale executions generates large volumes of performance data. Second, perfor
Ubers business is highly real-time in nature. PBs of data is continuously being collected from the end users such as Uber drivers, riders, restaurants, eaters and so on everyday. There is a lot of valuable information to be processed and many decisio
We present here Nested_fit, a Bayesian data analysis code developed for investigations of atomic spectra and other physical data. It is based on the nested sampling algorithm with the implementation of an upgraded lawn mower robot method for finding
Grain is a data analysis framework developed to be used with the novel Total Data Readout data acquisition system. In Total Data Readout all the electronics channels are read out asynchronously in singles mode and each data item is timestamped. Event