ترغب بنشر مسار تعليمي؟ اضغط هنا

Preparing for Performance Analysis at Exascale

110   0   0.0 ( 0 )
 نشر من قبل Jonathon Anderson
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Performance tools for forthcoming heterogeneous exascale platforms must address two principal challenges when analyzing execution measurements. First, measurement of extreme-scale executions generates large volumes of performance data. Second, performance metrics for heterogeneous applications are significantly sparse across code regions. To address these challenges, we developed a novel streaming aggregation approach to post-mortem analysis that employs both shared and distributed memory parallelism to aggregate sparse performance measurements from every rank, thread and GPU stream of a large-scale application execution. Analysis results are stored in a pair of sparse formats designed for efficient access to related data elements, supporting responsive interactive presentation and scalable data analytics. Empirical analysis shows that our implementation of this approach in HPCToolkit effectively processes measurement data from thousands of threads using a fraction of the compute resources employed by the application itself. Our approach is able to perform analysis up to 9.4 times faster and store analysis results 23 times smaller than HPCToolkit, providing a key building block for scalable exascale performance tools.

قيم البحث

اقرأ أيضاً

Astrophysical explosions such as supernovae are fascinating events that require sophisticated algorithms and substantial computational power to model. Castro and MAESTROeX are nuclear astrophysics codes that simulate thermonuclear fusion in the conte xt of supernovae and X-ray bursts. Examining these nuclear burning processes using high resolution simulations is critical for understanding how these astrophysical explosions occur. In this paper we describe the changes that have been made to these codes to transform them from standard MPI + OpenMP codes targeted at petascale CPU-based systems into a form compatible with the pre-exascale systems now online and the exascale systems coming soon. We then discuss what new science is possible to run on systems such as Summit and Perlmutter that could not have been achieved on the previous generation of supercomputers.
103 - Pu Yuan , Kan Zheng , Xiong Xiong 2020
As a highly scalable permissioned blockchain platform, Hyperledger Fabric supports a wide range of industry use cases ranging from governance to finance. In this paper, we propose a model to analyze the performance of a Hyperledgerbased system by usi ng Generalised Stochastic Petri Nets (GSPN). This model decomposes a transaction flow into multiple phases and provides a simulation-based approach to obtain the system latency and throughput with a specific arrival rate. Based on this model, we analyze the impact of different configurations of ordering service on system performance to find out the bottleneck. Moreover, a mathematical configuration selection approach is proposed to determine the best configuration which can maximize the system throughput. Finally, extensive experiments are performed on a running system to validate the proposed model and approaches.
Big data applications and analytics are employed in many sectors for a variety of goals: improving customers satisfaction, predicting market behavior or improving processes in public health. These applications consist of complex software stacks that are often run on cloud systems. Predicting execution times is important for estimating the cost of cloud services and for effectively managing the underlying resources at runtime. Machine Learning (ML), providing black box solutions to model the relationship between application performance and system configuration without requiring in-detail knowledge of the system, has become a popular way of predicting the performance of big data applications. We investigate the cost-benefits of using supervised ML models for predicting the performance of applications on Spark, one of todays most widely used frameworks for big data analysis. We compare our approach with textit{Ernest} (an ML-based technique proposed in the literature by the Spark inventors) on a range of scenarios, application workloads, and cloud system configurations. Our experiments show that Ernest can accurately estimate the performance of very regular applications, but it fails when applications exhibit more irregular patterns and/or when extrapolating on bigger data set sizes. Results show that our models match or exceed Ernests performance, sometimes enabling us to reduce the prediction error from 126-187% to only 5-19%.
The applications being developed within the U.S. Exascale Computing Project (ECP) to run on imminent Exascale computers will generate scientific results with unprecedented fidelity and record turn-around time. Many of these codes are based on particl e-mesh methods and use advanced algorithms, especially dynamic load-balancing and mesh-refinement, to achieve high performance on Exascale machines. Yet, as such algorithms improve parallel application efficiency, they raise new challenges for I/O logic due to their irregular and dynamic data distributions. Thus, while the enormous data rates of Exascale simulations already challenge existing file system write strategies, the need for efficient read and processing of generated data introduces additional constraints on the data layout strategies that can be used when writing data to secondary storage. We review these I/O challenges and introduce two online data layout reorganization approaches for achieving good tradeoffs between read and write performance. We demonstrate the benefits of using these two approaches for the ECP particle-in-cell simulation WarpX, which serves as a motif for a large class of important Exascale applications. We show that by understanding application I/O patterns and carefully designing data layouts we can increase read performance by more than 80%.
Much of the current focus in high-performance computing is on multi-threading, multi-computing, and graphics processing unit (GPU) computing. However, vectorization and non-parallel optimization techniques, which can often be employed additionally, a re less frequently discussed. In this paper, we present an analysis of several optimizations done on both central processing unit (CPU) and GPU implementations of a particular computationally intensive Metropolis Monte Carlo algorithm. Explicit vectorization on the CPU and the equivalent, explicit memory coalescing, on the GPU are found to be critical to achieving good performance of this algorithm in both environments. The fully-optimized CPU version achieves a 9x to 12x speedup over the original CPU version, in addition to speedup from multi-threading. This is 2x faster than the fully-optimized GPU version.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا