ﻻ يوجد ملخص باللغة العربية
Machine Learning (ML) can help solve combinatorial optimization (CO) problems better. A popular approach is to use a neural net to compute on the parameters of a given CO problem and extract useful information that guides the search for good solutions. Many CO problems of practical importance can be specified in a matrix form of parameters quantifying the relationship between two groups of items. There is currently no neural net model, however, that takes in such matrix-style relationship data as an input. Consequently, these types of CO problems have been out of reach for ML engineers. In this paper, we introduce Matrix Encoding Network (MatNet) and show how conveniently it takes in and processes parameters of such complex CO problems. Using an end-to-end model based on MatNet, we solve asymmetric traveling salesman (ATSP) and flexible flow shop (FFSP) problems as the earliest neural approach. In particular, for a class of FFSP we have tested MatNet on, we demonstrate a far superior empirical performance to any methods (neural or not) known to date.
Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm. We propose a new graph convolutional neural network model for learning branch-and-bound variable selection policies, which leverages the natural variable-cons
We demonstrate how graph neural networks can be used to solve combinatorial optimization problems. Our approach is broadly applicable to canonical NP-hard problems in the form of quadratic unconstrained binary optimization problems, such as maximum c
The use of blackbox solvers inside neural networks is a relatively new area which aims to improve neural network performance by including proven, efficient solvers for complex problems. Existing work has created methods for learning networks with the
Multilayer-perceptrons (MLP) are known to struggle with learning functions of high-frequencies, and in particular cases with wide frequency bands. We present a spatially adaptive progressive encoding (SAPE) scheme for input signals of MLP networks, w
In certain situations, Neural Networks (NN) are trained upon data that obey underlying physical symmetries. However, it is not guaranteed that NNs will obey the underlying symmetry unless embedded in the network structure. In this work, we explore a