ﻻ يوجد ملخص باللغة العربية
We report an improved measurement of the free neutron lifetime $tau_{n}$ using the UCN$tau$ apparatus at the Los Alamos Neutron Science Center. We counted a total of approximately $38times10^{6}$ surviving ultracold neutrons (UCN) after storing in UCN$tau$s magneto-gravitational trap over two data acquisition campaigns in 2017 and 2018. We extract $tau_{n}$ from three blinded, independent analyses by both pairing long and short storage-time runs to find a set of replicate $tau_{n}$ measurements and by performing a global likelihood fit to all data while self-consistently incorporating the $beta$-decay lifetime. Both techniques achieve consistent results and find a value $tau_{n}=877.75pm0.28_{text{ stat}}+0.22/-0.16_{text{ syst}}$~s. With this sensitivity, neutron lifetime experiments now directly address the impact of recent refinements in our understanding of the standard model for neutron decay.
The precise value of the mean neutron lifetime, $tau_n$, plays an important role in nuclear and particle physics and cosmology. It is a key input for predicting the ratio of protons to helium atoms in the primordial universe and is used to search for
In a neutron lifetime measurement at the Japan Proton Accelerator Complex, the neutron lifetime is calculated by the neutron decay rate and the incident neutron flux. The flux is obtained due to counting the protons emitted from the neutron absorptio
The neutron lifetime has been measured by comparing the decay rate with the reaction rate of $^3$He nuclei of a pulsed neutron beam from the spallation neutron source at the Japan Proton Accelerator Research Complex (J-PARC). The decay rate and the r
We report on an improved measurement of the 2 u beta beta half-life of Xe-136 performed by EXO-200. The use of a large and homogeneous time projection chamber allows for the precise estimate of the fiducial mass used for the measurement, resulting in
Purcell effect predicts that spontaneous radiation is not an intrinsic property of matter, but is affected by the environment in which it is located, and is the result of the interaction of matter and field. Purcell effect can be inferred from Fermi