ﻻ يوجد ملخص باللغة العربية
In a neutron lifetime measurement at the Japan Proton Accelerator Complex, the neutron lifetime is calculated by the neutron decay rate and the incident neutron flux. The flux is obtained due to counting the protons emitted from the neutron absorption reaction of ${}^{3}{rm He}$ gas, which is diluted in a mixture of working gas in a detector. Hence, it is crucial to determine the amount of ${}^{3}{rm He}$ in the mixture. In order to improve the accuracy of the number density of the ${}^{3}{rm He}$ nuclei, we suggested to use the ${}^{14}{rm N}({rm n},{rm p}){}^{14}{rm C}$ reaction as a reference because this reaction involves similar kinetic energy as the ${}^{3}{rm He}({rm n},{rm p}){}^{3}{rm H}$ reaction and a smaller reaction cross section to introduce reasonable large partial pressure. The uncertainty of the recommended value of the cross section, however, is not satisfied with our requirement. In this paper, we report the most accurate experimental value of the cross section of the ${}^{14}{rm N}({rm n},{rm p}){}^{14}{rm C}$ reaction at a neutron velocity of 2200 m/s, measured relative to the ${}^{3}{rm He}({rm n},{rm p}){}^{3}{rm H}$ reaction. The result was 1.868 $pm$ 0.003 (stat.) $pm$ 0.006 (sys.) b. Additionally, the cross section of the ${}^{17}{rm O}({rm n},{rm alpha}){}^{14}{rm C}$ reaction at the neutron velocity is also redetermined as 249 $pm$ 6 mb.
The use of argon as a detection and shielding medium for neutrino and dark matter experiments has made the precise knowledge of the cross section for neutron capture on argon an important design and operational parameter. Since previous measurements
The part-per-million measurement of the positive muon lifetime and determination of the Fermi constant by the MuLan experiment at the Paul Scherrer Institute is reviewed. The experiment used an innovative, time-structured, surface muon beam and a nea
In stars with temperatures above 20*10^6 K, hydrogen burning is dominated by the CNO cycle. Its rate is determined by the slowest process, the 14N(p,gamma)15O reaction. Deep underground in Italys Gran Sasso laboratory, at the LUNA 400 kV accelerator,
We report an improved measurement of the free neutron lifetime $tau_{n}$ using the UCN$tau$ apparatus at the Los Alamos Neutron Science Center. We counted a total of approximately $38times10^{6}$ surviving ultracold neutrons (UCN) after storing in UC
The 235U(n,f) cross section was measured in a wide energy range at n_TOF relative to 6Li(n,t) and 10B(n,alpha), with high resolution and in a wide energy range, with a setup based on a stack of six samples and six silicon detectors placed in the neut