ﻻ يوجد ملخص باللغة العربية
We investigate whether the recently suggested rotation and crystallization driven dynamo can explain the apparent increase of magnetism in old metal polluted white dwarfs. We find that the effective temperature distribution of polluted magnetic white dwarfs is in agreement with most/all of them having a crystallizing core and increased rotational velocities are expected due to accretion of planetary material which is evidenced by the metal absorption lines. We conclude that a rotation and crystallization driven dynamo offers not only an explanation for the different occurrence rates of strongly magnetic white dwarfs in close binaries, but also for the high incidence of weaker magnetic fields in old metal polluted white dwarfs.
Over 1500 DBZ or DZ white dwarfs (WDs) have been observed so far, and polluted atmospheres with metal elements have been found among these WDs. The surface heavy element abundances of known DBZ or DZ WDs show an evolutionary sequence. By using Module
Infrared excesses around white dwarf stars indicate the presence of various astrophysical objects of interest, including companions and debris disks. In this second paper of a series, we present follow-up observations of infrared excess candidates fr
The absence of magnetic white dwarfs with a non-degenerate low-mass stellar companion in a wide binary is still very intriguing and at odds with the hypothesis that magnetic white dwarfs are the progenies of the magnetically peculiar Ap/Bp stars. On
In a previous study, we analysed the spectra of 230 cool ($T_mathrm{eff}$ < 9000 K) white dwarfs exhibiting strong metal contamination, measuring abundances for Ca, Mg, Fe and in some cases Na, Cr, Ti, or Ni. Here we interpret these abundances in ter
In this paper we review the current status of research on the observational and theoretical characteristics of isolated and binary magnetic white dwarfs (MWDs). Magnetic fields of isolated MWDs are observed to lie in the range 10^3-10^9G. While the