ﻻ يوجد ملخص باللغة العربية
Infrared excesses around white dwarf stars indicate the presence of various astrophysical objects of interest, including companions and debris disks. In this second paper of a series, we present follow-up observations of infrared excess candidates from Gaia and unWISE discussed in the first paper, Paper I. We report space-based infrared photometry at 3.6 and 4.5 micron for 174 white dwarfs from the Spitzer Space Telescope and ground-based near-infrared J, H, and K photometry of 235 white dwarfs from Gemini Observatory with significant overlap between Spitzer and Gemini observations. This data is used to confirm or rule-out the observed unWISE infrared excess. From the unWISE-selected candidate sample, the most promising infrared excess sample comes from both colour and flux excess, which has a Spitzer confirmation rate of 95%. We also discuss a method to distinguish infrared excess caused by stellar or sub-stellar companions from potential dust disks. In total, we confirm the infrared excess around 61 white dwarfs, 10 of which are likely to be stellar companions. The remaining 51 bright white dwarf with infrared excess beyond two microns has the potential to double the known sample of white dwarfs with dusty exoplanetary debris disks. Follow-up high-resolution spectroscopic studies of a fraction of confirmed excess white dwarfs in this sample have discovered emission from gaseous dust disks. Additional investigations will be able to expand the parameter space from which dust disks around white dwarfs are found.
IR excesses of white dwarfs (WDs) can be used to diagnose the presence of low-mass companions, planets, and circumstellar dust. Using different combinations of wavelengths and WD temperatures, circumstellar dust at different radial distances can be s
With the launch of the {em Wide-field Infrared Survey Explorer} ({em WISE}), a new era of detecting planetary debris and brown dwarfs around white dwarfs (WDs) has begun with the {em WISE} InfraRed Excesses around Degenerates (WIRED) Survey. The WIRE
White dwarfs are routinely observed to have polluted atmospheres, and sometimes significant infrared excesses, that indicate ongoing accretion of circumstellar dust and rocky debris. Typically this debris is assumed to be in the form of a (circular)
Effective temperatures and luminosities are calculated for 1,475,921 Tycho-2 and 107,145 Hipparcos stars, based on distances from Gaia Data Release 1. Parameters are derived by comparing multi-wavelength archival photometry to BT-Settl model atmosphe
We analyse the 100pc Gaia white dwarf volume-limited sample by means of VOSA (Virtual Observatory SED Analyser) with the aim of identifying candidates for displaying infrared excesses. Our search focuses on the study of the spectral energy distributi