ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-head or Single-head? An Empirical Comparison for Transformer Training

235   0   0.0 ( 0 )
 نشر من قبل Liyuan Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-head attention plays a crucial role in the recent success of Transformer models, which leads to consistent performance improvements over conventional attention in various applications. The popular belief is that this effectiveness stems from the ability of jointly attending multiple positions. In this paper, we first demonstrate that jointly attending multiple positions is not a unique feature of multi-head attention, as multi-layer single-head attention also attends multiple positions and is more effective. Then, we suggest the main advantage of the multi-head attention is the training stability, since it has less number of layers than the single-head attention, when attending the same number of positions. For example, 24-layer 16-head Transformer (BERT-large) and 384-layer single-head Transformer has the same total attention head number and roughly the same model size, while the multi-head one is significantly shallower. Meanwhile, we show that, with recent advances in deep learning, we can successfully stabilize the training of the 384-layer Transformer. As the training difficulty is no longer a bottleneck, substantially deeper single-head Transformer achieves consistent performance improvements without tuning hyper-parameters.



قيم البحث

اقرأ أيضاً

The primary paradigm for multi-task training in natural language processing is to represent the input with a shared pre-trained language model, and add a small, thin network (head) per task. Given an input, a target head is the head that is selected for outputting the final prediction. In this work, we examine the behaviour of non-target heads, that is, the output of heads when given input that belongs to a different task than the one they were trained for. We find that non-target heads exhibit emergent behaviour, which may either explain the target task, or generalize beyond their original task. For example, in a numerical reasoning task, a span extraction head extracts from the input the arguments to a computation that results in a number generated by a target generative head. In addition, a summarization head that is trained with a target question answering head, outputs query-based summaries when given a question and a context from which the answer is to be extracted. This emergent behaviour suggests that multi-task training leads to non-trivial extrapolation of skills, which can be harnessed for interpretability and generalization.
Transformers have advanced the field of natural language processing (NLP) on a variety of important tasks. At the cornerstone of the Transformer architecture is the multi-head attention (MHA) mechanism which models pairwise interactions between the e lements of the sequence. Despite its massive success, the current framework ignores interactions among different heads, leading to the problem that many of the heads are redundant in practice, which greatly wastes the capacity of the model. To improve parameter efficiency, we re-formulate the MHA as a latent variable model from a probabilistic perspective. We present cascaded head-colliding attention (CODA) which explicitly models the interactions between attention heads through a hierarchical variational distribution. We conduct extensive experiments and demonstrate that CODA outperforms the transformer baseline, by $0.6$ perplexity on texttt{Wikitext-103} in language modeling, and by $0.6$ BLEU on texttt{WMT14 EN-DE} in machine translation, due to its improvements on the parameter efficiency.footnote{Our implementation is publicly available at url{https://github.com/LZhengisme/CODA}.}
Co-training, extended from self-training, is one of the frameworks for semi-supervised learning. Without natural split of features, single-view co-training works at the cost of training extra classifiers, where the algorithm should be delicately desi gned to prevent individual classifiers from collapsing into each other. To remove these obstacles which deter the adoption of single-view co-training, we present a simple and efficient algorithm Multi-Head Co-Training. By integrating base learners into a multi-head structure, the model is in a minimal amount of extra parameters. Every classification head in the unified model interacts with its peers through a Weak and Strong Augmentation strategy, in which the diversity is naturally brought by the strong data augmentation. Therefore, the proposed method facilitates single-view co-training by 1). promoting diversity implicitly and 2). only requiring a small extra computational overhead. The effectiveness of Multi-Head Co-Training is demonstrated in an empirical study on standard semi-supervised learning benchmarks.
The attention mechanism of the Listen, Attend and Spell (LAS) model requires the whole input sequence to calculate the attention context and thus is not suitable for online speech recognition. To deal with this problem, we propose multi-head monotoni c chunk-wise attention (MTH-MoChA), an improved version of MoChA. MTH-MoChA splits the input sequence into small chunks and computes multi-head attentions over the chunks. We also explore useful training strategies such as LSTM pooling, minimum world error rate training and SpecAugment to further improve the performance of MTH-MoChA. Experiments on AISHELL-1 data show that the proposed model, along with the training strategies, improve the character error rate (CER) of MoChA from 8.96% to 7.68% on test set. On another 18000 hours in-car speech data set, MTH-MoChA obtains 7.28% CER, which is significantly better than a state-of-the-art hybrid system.
Widespread adoption of deep models has motivated a pressing need for approaches to interpret network outputs and to facilitate model debugging. Instance attribution methods constitute one means of accomplishing these goals by retrieving training inst ances that (may have) led to a particular prediction. Influence functions (IF; Koh and Liang 2017) provide machinery for doing this by quantifying the effect that perturbing individual train instances would have on a specific test prediction. However, even approximating the IF is computationally expensive, to the degree that may be prohibitive in many cases. Might simpler approaches (e.g., retrieving train examples most similar to a given test point) perform comparably? In this work, we evaluate the degree to which different potential instance attribution agree with respect to the importance of training samples. We find that simple retrieval methods yield training instances that differ from those identified via gradient-based methods (such as IFs), but that nonetheless exhibit desirable characteristics similar to more complex attribution methods. Code for all methods and experiments in this paper is available at: https://github.com/successar/instance_attributions_NLP.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا