ترغب بنشر مسار تعليمي؟ اضغط هنا

One-dimensional ghost imaging with an electron microscope: a route towards ghost imaging with inelastically scattered electrons

105   0   0.0 ( 0 )
 نشر من قبل Vincenzo Grillo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In quantum mechanics, entanglement and correlations are not just a mere sporadic curiosity, but rather common phenomena at the basis of an interacting quantum system. In electron microscopy, such concepts have not been extensively explored yet in all their implications; in particular, inelastic scattering can be reanalyzed in terms of correlation between the electron beam and the sample. While classical inelastic scattering simply implies loss of coherence in the electron beam, performing a joint measurement on the electron beam and the sample excitation could restore the coherence and the lost information. Here, we propose to exploit joint measurement in electron microscopy for a surprising and counter-intuitive application of the concept of ghost imaging. Ghost imaging, first proposed in quantum photonics, can be applied partially in electron microscopy by performing joint measurement between the portion of the transmitted electron beam and a photon emitted from the sample reaching a bucket detector. This would permit us to form a one-dimensional virtual image of an object that even has not interacted with the electron beam directly. This technique is extremely promising for low-dose imaging that requires the minimization of radiation exposure for electron-sensitive materials, because the object interacts with other form of waves, e.g., photons/surface plasmon polaritons, and not the electron beam. We demonstrate this concept theoretically for any inelastic electron-sample interaction in which the electron excites a single quantum of a collective mode, such as a photon, plasmon, phonon, magnon, or any optical polariton.



قيم البحث

اقرأ أيضاً

We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a novel experimental configuration the effect of turbulence can be greatly diminished. By decoupling the entangled photon source from the ghost imaging central image plane, we are able to dramatically increase the ghost image quality. When imaging a test pattern through turbulence, this method increased the imaged pattern visibility from V = 0.14 +/- 0.04 to V = 0.29 +/- 0.04.
Compared with two-dimensional imaging, three-dimensional imaging is much more advantageous to catch the characteristic information of the target for remote sensing. We report a range-resolving ghost imaging ladar system together with the experimental demonstration of three-dimensional remote sensing with a large field of view. The experiments show that, by measuring the correlation function of intensity fluctuations between two light fields, a three-dimensional map at about 1.0 km range with 25 cm resolution in lateral direction and 60 cm resolution in axial direction has been achieved by time-resolved measurements of the reflection signals.
Ghost imaging is a technique -- first realized in quantum optics -- in which the image emerges from cross-correlation between particles in two separate beams. One beam passes through the object to a bucket (single-pixel) detector, while the second be ams spatial profile is measured by a high resolution (multi-pixel) detector but never interacts with the object. Neither detector can reconstruct the image independently. However, until now ghost imaging has only been demonstrated with photons. Here we report the first realisation of ghost imaging of an object using massive particles. In our experiment, the two beams are formed by correlated pairs of ultracold metastable helium atoms, originating from two colliding Bose-Einstein condensates (BECs) via $s$-wave scattering. We use the higher-order Kapitza-Dirac effect to generate the large number of correlated atom pairs required, enabling the creation of a ghost image with good visibility and sub-millimetre resolution. Future extensions could include ghost interference as well as tests of EPR entantlement and Bells inequalities.
Traditional ghost imaging experiments exploit position correlations between correlated states of light. These correlations occur directly in spontaneous parametric down-conversion (SPDC), and in such a scenario, the two-photon state used for ghost im aging is symmetric. Here we perform ghost imaging using an anti-symmetric state, engineering the two-photon state symmetry by means of Hong-Ou-Mandel interference. We use both symmetric and anti-symmetric states and show that the ghost imaging setup configuration results in object-image rotations depending on the state selected. Further, the object and imaging arms employ spatial light modulators for the all-digital control of the projections, being able to dynamically change the measuring technique and the spatial properties of the states under study. Finally, we provide a detailed theory that explains the reported observations.
82 - Dongyu Liu 2021
Non-local point-to-point correlations between two photons have been used to produce ghost images without placing the camera towards the object. Here we theoretically demonstrated and analyzed the advantage of non-Gaussian quantum light in improving t he image quality of ghost imaging system over traditional Gaussian light source. For any squeezing degree, the signal-to-noise ratio (SNR) of the ghost image can be enhanced by the non-Gaussian operations of photon addition and subtraction on the two-mode squeezed light source. We find striking evidence that using non-Gaussian coherent operations, the SNR can be promoted to a high level even within the extremely weak squeezing regime. The resulting insight provides new experimental recipes of quantum imaging using non-Gaussian light for illumination.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا