ترغب بنشر مسار تعليمي؟ اضغط هنا

Ghost Imaging with Atoms

203   0   0.0 ( 0 )
 نشر من قبل Roman Khakimov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ghost imaging is a technique -- first realized in quantum optics -- in which the image emerges from cross-correlation between particles in two separate beams. One beam passes through the object to a bucket (single-pixel) detector, while the second beams spatial profile is measured by a high resolution (multi-pixel) detector but never interacts with the object. Neither detector can reconstruct the image independently. However, until now ghost imaging has only been demonstrated with photons. Here we report the first realisation of ghost imaging of an object using massive particles. In our experiment, the two beams are formed by correlated pairs of ultracold metastable helium atoms, originating from two colliding Bose-Einstein condensates (BECs) via $s$-wave scattering. We use the higher-order Kapitza-Dirac effect to generate the large number of correlated atom pairs required, enabling the creation of a ghost image with good visibility and sub-millimetre resolution. Future extensions could include ghost interference as well as tests of EPR entantlement and Bells inequalities.



قيم البحث

اقرأ أيضاً

We demonstrate single-atom resolved imaging with a survival probability of $0.99932(8)$ and a fidelity of $0.99991(1)$, enabling us to perform repeated high-fidelity imaging of single atoms in tweezers for thousands of times. We further observe lifet imes under laser cooling of more than seven minutes, an order of magnitude longer than in previous tweezer studies. Experiments are performed with strontium atoms in $813.4~text{nm}$ tweezer arrays, which is at a magic wavelength for the clock transition. Tuning to this wavelength is enabled by off-magic Sisyphus cooling on the intercombination line, which lets us choose the tweezer wavelength almost arbitrarily. We find that a single not retro-reflected cooling beam in the radial direction is sufficient for mitigating recoil heating during imaging. Moreover, this cooling technique yields temperatures below $5~mu$K, as measured by release and recapture. Finally, we demonstrate clock-state resolved detection with average survival probability of $0.996(1)$ and average state detection fidelity of $0.981(1)$. Our work paves the way for atom-by-atom assembly of large defect-free arrays of alkaline-earth atoms, in which repeated interrogation of the clock transition is an imminent possibility.
We successfully demonstrate a quantum gas microscopy using the Faraday effect which has an inherently non-destructive nature. The observed Faraday rotation angle reaches 3.0(2) degrees for a single atom. We reveal the non-destructive feature of this Faraday imaging method by comparing the detuning dependence of the Faraday signal strength with that of the photon scattering rate. We determine the atom distribution with deconvolution analysis. We also demonstrate the absorption and the dark field Faraday imaging, and reveal the different shapes of the point spread functions for these methods, which are fully explained by theoretical analysis. Our result is an important first step towards an ultimate quantum non-demolition site-resolved imaging and furthermore opens up the possibilities for quantum feedback control of a quantum many-body system with a single-site resolution.
We demonstrate single-shot imaging and narrow-line cooling of individual alkaline earth atoms in optical tweezers; specifically, strontium-88 atoms trapped in $515.2~text{nm}$ light. We achieve high-fidelity single-atom-resolved imaging by detecting photons from the broad singlet transition while cooling on the narrow intercombination line, and extend this technique to highly uniform two-dimensional arrays of $121$ tweezers. Cooling during imaging is based on a previously unobserved narrow-line Sisyphus mechanism, which we predict to be applicable in a wide variety of experimental situations. Further, we demonstrate optically resolved sideband cooling of a single atom close to the motional ground state of a tweezer. Precise determination of losses during imaging indicate that the branching ratio from $^1$P$_1$ to $^1$D$_2$ is more than a factor of two larger than commonly quoted, a discrepancy also predicted by our ab initio calculations. We also measure the differential polarizability of the intercombination line in a $515.2~text{nm}$ tweezer and achieve a magic-trapping configuration by tuning the tweezer polarization from linear to elliptical. We present calculations, in agreement with our results, which predict a magic crossing for linear polarization at $520(2)~text{nm}$ and a crossing independent of polarization at 500.65(50)nm. Our results pave the way for a wide range of novel experimental avenues based on individually controlled alkaline earth atoms in tweezers -- from fundamental experiments in atomic physics to quantum computing, simulation, and metrology implementations.
We demonstrate fluorescence microscopy of individual fermionic potassium atoms in a 527-nm-period optical lattice. Using electromagnetically induced transparency (EIT) cooling on the 770.1-nm D$_1$ transition of $^{40}$K, we find that atoms remain at individual sites of a 0.3-mK-deep lattice, with a $1/e$ pinning lifetime of $67(9),rm{s}$, while scattering $sim 10^3$ photons per second. The plane to be imaged is isolated using microwave spectroscopy in a magnetic field gradient, and can be chosen at any depth within the three-dimensional lattice. With a similar protocol, we also demonstrate patterned selection within a single lattice plane. High resolution images are acquired using a microscope objective with 0.8 numerical aperture, from which we determine the occupation of lattice sites in the imaging plane with 94(2)% fidelity per atom. Imaging with single-atom sensitivity and addressing with single-site accuracy are key steps towards the search for unconventional superfluidity of fermions in optical lattices, the initialization and characterization of transport and non-equilibrium dynamics, and the observation of magnetic domains.
Direct minimisation of a cost function can in principle provide a versatile and highly controllable route to computational hologram generation. However, to date iterative Fourier transform algorithms have been predominantly used. Here we show that th e careful design of cost functions, combined with numerically efficient conjugate gradient minimisation, establishes a practical method for the generation of holograms for a wide range of target light distributions. This results in a guided optimisation process, with a crucial advantage illustrated by the ability to circumvent optical vortex formation during hologram calculation. We demonstrate the implementation of the conjugate gradient method for both discrete and continuous intensity distributions and discuss its applicability to optical trapping of ultracold atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا