ﻻ يوجد ملخص باللغة العربية
We present the contribution from potential interactions to the dynamics of non-spinning binaries to fourth Post-Minkowskian (4PM) order. This is achieved by computing the scattering angle to ${cal O}(G^4)$ using the effective field theory approach and deriving the bound radial action through analytic continuation. We reconstruct the Hamiltonian and center-of-mass momentum in an isotropic gauge. The (three-loop) integrals involved in our calculation are computed via differential equations, including a sector yielding elliptic integrals. As a prelude of radiation-reaction effects, using the universal link between potential and tail terms, we also report: 1) The instantaneous energy flux at ${cal O}(G^3)$; 2) The contribution to the 4PM unbound/bound radial action(s) depending on logarithms of the binding energy; 3) The (scheme-independent) logarithmic contribution to the 4PM non-local tail Hamiltonian for circular orbits. Our results in the potential region are in agreement with the recent derivation from scattering amplitudes. We also find perfect agreement in the overlap with the state-of-the-art in Post-Newtonian theory.
We derive the conservative dynamics of non-spinning binaries to third Post-Minkowskian order, using the Effective Field Theory (EFT) approach introduced in [2006.01184] together with the Boundary-to-Bound dictionary developed in [1910.03008, 1911.091
We develop an Effective Field Theory (EFT) formalism to solve for the conservative dynamics of binary systems in gravity via Post-Minkowskian (PM) scattering data. Our framework combines a systematic EFT approach to compute the deflection angle in th
Building upon the worldline effective field theory (EFT) formalism for spinning bodies developed for the Post-Newtonian regime, we generalize the EFT approach to Post-Minkowskian (PM) dynamics to include rotational degrees of freedom in a manifestly
We study the Post-Minkowskian (PM) and Post-Newtonian (PN) expansions of the gravitational three-body effective potential. At order 2PM a formal result is given in terms of a differential operator acting on the maximal generalized cut of the one-loop
The Effective One-Body formalism of the gravitational two-body problem in general relativity is reconsidered in the light of recent scattering amplitude calculations. Based on the kinematic relationship between momenta and the effective potential, we