ﻻ يوجد ملخص باللغة العربية
Building upon the worldline effective field theory (EFT) formalism for spinning bodies developed for the Post-Newtonian regime, we generalize the EFT approach to Post-Minkowskian (PM) dynamics to include rotational degrees of freedom in a manifestly covariant framework. We introduce a systematic procedure to compute the total change in momentum and spin in the gravitational scattering of compact objects. For the special case of spins aligned with the orbital angular momentum, we show how to construct the radial action for elliptic-like orbits using the Boundary-to-Bound correspondence. As a paradigmatic example, we solve the scattering problem to next-to-leading PM order with linear and bilinear spin effects and arbitrary initial conditions, incorporating for the first time finite-size corrections. We obtain the aligned-spin radial action from the resulting scattering data, and derive the periastron advance and binding energy for circular orbits. We also provide the (square of the) center-of-mass momentum to ${cal O}(G^2)$, which may be used to reconstruct a Hamiltonian. Our results are in perfect agreement with the existent literature, while at the same time extend the knowledge of the PM dynamics of compact binaries at quadratic order in spins.
We develop an Effective Field Theory (EFT) formalism to solve for the conservative dynamics of binary systems in gravity via Post-Minkowskian (PM) scattering data. Our framework combines a systematic EFT approach to compute the deflection angle in th
We derive the conservative dynamics of non-spinning binaries to third Post-Minkowskian order, using the Effective Field Theory (EFT) approach introduced in [2006.01184] together with the Boundary-to-Bound dictionary developed in [1910.03008, 1911.091
We present the contribution from potential interactions to the dynamics of non-spinning binaries to fourth Post-Minkowskian (4PM) order. This is achieved by computing the scattering angle to ${cal O}(G^4)$ using the effective field theory approach an
The Effective One-Body formalism of the gravitational two-body problem in general relativity is reconsidered in the light of recent scattering amplitude calculations. Based on the kinematic relationship between momenta and the effective potential, we
Using the Effective Field Theory approach together with the Boundary-to-Bound map, we compute the next-to-leading order (NLO) Post-Minkowskian (PM) tidal effects in the conservative dynamics of compact binary systems. We derive the mass and current q