ترغب بنشر مسار تعليمي؟ اضغط هنا

Connecting Large-Scale Velocity and Temperature Bursts with Small-Scale Intermittency in Stratified Turbulence

106   0   0.0 ( 0 )
 نشر من قبل Fabio Feraco
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-Gaussian statistics of large-scale fields are routinely observed in data from atmospheric and oceanic campaigns and global models. Recent direct numerical simulations (DNSs) showed that large-scale intermittency in stably stratified flows is due to the emergence of sporadic, extreme events in the form of bursts in the vertical velocity and the temperature. This phenomenon results from the interplay between waves and turbulent motions, affecting mixing. We provide evidence of the enhancement of the classical small-scale (or internal) intermittency due to the emergence of large-scale drafts, connecting large- and small-scale bursts. To this aim we analyze a large set of DNSs of the stably stratified Boussinesq equations over a wide range of values of the Froude number ($Frapprox 0.01-1$). The variation of the buoyancy field kurtosis with $Fr$ is similar to (though with smaller values than) the kurtosis of the vertical velocity, both showing a non-monotonic trend. We present a mechanism for the generation of extreme vertical drafts and vorticity enhancements which follows from the exact equations for field gradients.



قيم البحث

اقرأ أيضاً

407 - H. Mouri , A. Hori , M. Takaoka 2009
For several flows of laboratory turbulence, we obtain long records of velocity data. These records are divided into numerous segments. In each segment, we calculate the mean rate of energy dissipation, the mean energy at each scale, and the mean tota l energy. Their values fluctuate significantly among the segments. The fluctuations are lognormal, if the segment length lies within the range of large scales where the velocity correlations are weak but not yet absent. Since the lognormality is observed regardless of the Reynolds number and the configuration for turbulence production, it is expected to be universal. The likely origin is some multiplicative stochastic process related to interactions among scales through the energy transfer.
We discuss a mean-field theory of generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale nonuniform flow is produced due to ether a combined action o f a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.
We find an instability resulting in generation of large-scale vorticity in a fast rotating small-scale turbulence or turbulent convection with inhomogeneous fluid density along the rotational axis in anelastic approximation. The large-scale instabili ty causes excitation of two modes: (i) the mode with dominant vertical vorticity and with the mean velocity being independent of the vertical coordinate; (ii) the mode with dominant horizontal vorticity and with the mean momentum being independent of the vertical coordinate. The mode with the dominant vertical vorticity can be excited in a fast rotating density stratified hydrodynamic turbulence or turbulent convection. For this mode, the mean entropy is depleted inside the cyclonic vortices, while it is enhanced inside the anti-cyclonic vortices. The mode with the dominant horizontal vorticity can be excited only in a fast rotating density stratified turbulent convection. The developed theory may be relevant for explanation of an origin of large spots observed as immense storms in great planets, e.g., the Great Red Spot in Jupiter and large spots in Saturn. It may be also useful for explanation of an origin of high-latitude spots in rapidly rotating late-type stars.
285 - Ke-Qi Ding , Kun Yang , Xiang Yang 2021
The self-similar Richardson cascade admits two logically possible scenarios of small-scale turbulence at high Reynolds numbers. In the first scenario, eddies population densities vary as a function of eddies scales. As a result, one or a few eddy typ es dominate at small scales, and small-scale turbulence lacks diversity. In the second scenario, eddies population densities are scale-invariant across the inertial range, resulting in small-scale diversity. That is, there are as many types of eddies at the small scales as at the large scales. In this letter, we measure eddies population densities in three-dimensional isotropic turbulence and determine the nature of small-scale turbulence. The result shows that eddies population densities are scale-invariant.
The proposed universality of small scale turbulence is investigated for a set of measurements in a cryogenic free jet with a variation of the Reynolds number (Re) from 8500 to 10^6. The traditional analysis of the statistics of velocity increments by means of structure functions or probability density functions is replaced by a new method which is based on the theory of stochastic Markovian processes. It gives access to a more complete characterization by means of joint probabilities of finding velocity increments at several scales. Based on this more precise method our results call in question the concept of universality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا