ترغب بنشر مسار تعليمي؟ اضغط هنا

Trapped Ion Quantum Computing using Optical Tweezers and Electric Fields

215   0   0.0 ( 0 )
 نشر من قبل Rene Gerritsma
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new scalable architecture for trapped ion quantum computing that combines optical tweezers delivering qubit state-dependent local potentials with oscillating electric fields. Since the electric field allows for long-range qubit-qubit interactions mediated by the center-of-mass motion of the ion crystal alone, it is inherently scalable to large ion crystals. Furthermore, our proposed scheme does not rely on either ground state cooling or the Lamb-Dicke approximation. We study the effects of imperfect cooling of the ion crystal, as well as the role of unwanted qubit-motion entanglement, and discuss the prospects of implementing the state-dependent tweezers in the laboratory.



قيم البحث

اقرأ أيضاً

Developing the isolation and control of ultracold atomic systems to the level of single quanta has led to significant advances in quantum sensing, yet demonstrating a quantum advantage in real world applications by harnessing entanglement remains a c ore task. Here, we realize a many-body quantum-enhanced sensor to detect weak displacements and electric fields using a large crystal of $sim 150$ trapped ions. The center of mass vibrational mode of the crystal serves as high-Q mechanical oscillator and the collective electronic spin as the measurement device. By entangling the oscillator and the collective spin before the displacement is applied and by controlling the coherent dynamics via a many-body echo we are able to utilize the delicate spin-motion entanglement to map the displacement into a spin rotation such that we avoid quantum back-action and cancel detrimental thermal noise. We report quantum enhanced sensitivity to displacements of $8.8 pm 0.4~$dB below the standard quantum limit and a sensitivity for measuring electric fields of $240pm10~mathrm{nV}mathrm{m}^{-1}$ in $1$ second ($240~mathrm{nV}mathrm{m}^{-1}/sqrt{mathrm{Hz}}$).
Quantum computers, much like their classical counterparts, will likely benefit from flexible qubit encodings that can be matched to different tasks. For trapped ion quantum processors, a common way to access multiple encodings is to use multiple, co- trapped atomic species. Here, we outline an alternative approach that allows flexible encoding capabilities in single-species systems through the use of long-lived metastable states as an effective, programmable second species. We describe the set of additional trapped ion primitives needed to enable this protocol and show that they are compatible with large-scale systems that are already in operation.
In recent years, arrays of atomic ions in a linear RF trap have proven to be a particularly successful platform for quantum simulation. However, a wide range of quantum models and phenomena have, so far, remained beyond the reach of such simulators. In this work we introduce a technique that can substantially extend this reach using an external field gradient along the ion chain and a global, uniform driving field. The technique can be used to generate both static and time-varying synthetic gauge fields in a linear chain of trapped ions, and enables continuous simulation of a variety of coupling geometries and topologies, including periodic boundary conditions and high dimensional Hamiltonians. We describe the technique, derive the corresponding effective Hamiltonian, propose a number of variations, and discuss the possibility of scaling to quantum-advantage sized simulators. Additionally, we suggest several possible implementations and briefly examine two: the Aharonov-Bohm ring and the frustrated triangular ladder.
We propose to experimentally explore the Haldane phase in spin-one XXZ antiferromagnetic chains using trapped ions. We show how to adiabatically prepare the ground states of the Haldane phase, demonstrate their robustness against sources of experimen tal noise, and propose ways to detect the Haldane ground states based on their excitation gap and exponentially decaying correlations, nonvanishing nonlocal string order, and doubly-degenerate entanglement spectrum.
Scaling-up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, tran smit and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا