ﻻ يوجد ملخص باللغة العربية
Quantum computers, much like their classical counterparts, will likely benefit from flexible qubit encodings that can be matched to different tasks. For trapped ion quantum processors, a common way to access multiple encodings is to use multiple, co-trapped atomic species. Here, we outline an alternative approach that allows flexible encoding capabilities in single-species systems through the use of long-lived metastable states as an effective, programmable second species. We describe the set of additional trapped ion primitives needed to enable this protocol and show that they are compatible with large-scale systems that are already in operation.
The availability of a universal quantum computer will have fundamental impact on a vast number of research fields and society as a whole. An increasingly large scientific and industrial community is working towards the realization of such a device. A
We propose a new scalable architecture for trapped ion quantum computing that combines optical tweezers delivering qubit state-dependent local potentials with oscillating electric fields. Since the electric field allows for long-range qubit-qubit int
Scaling-up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, tran
The hybrid approach to quantum computation simultaneously utilizes both discrete and continuous variables which offers the advantage of higher density encoding and processing powers for the same physical resources. Trapped ions, with discrete interna
Quantum-mechanical principles can be used to process information (QIP). In one approach, linear arrays of trapped, laser cooled ion qubits (two-level quantum systems) are confined in segmented multi-zone electrode structures. The ion trap approach to