ﻻ يوجد ملخص باللغة العربية
A good translation should not only translate the original content semantically, but also incarnate personal traits of the original text. For a real-world neural machine translation (NMT) system, these user traits (e.g., topic preference, stylistic characteristics and expression habits) can be preserved in user behavior (e.g., historical inputs). However, current NMT systems marginally consider the user behavior due to: 1) the difficulty of modeling user portraits in zero-shot scenarios, and 2) the lack of user-behavior annotated parallel dataset. To fill this gap, we introduce a novel framework called user-driven NMT. Specifically, a cache-based module and a user-driven contrastive learning method are proposed to offer NMT the ability to capture potential user traits from their historical inputs under a zero-shot learning fashion. Furthermore, we contribute the first Chinese-English parallel corpus annotated with user behavior called UDT-Corpus. Experimental results confirm that the proposed user-driven NMT can generate user-specific translations.
Small perturbations in the input can severely distort intermediate representations and thus impact translation quality of neural machine translation (NMT) models. In this paper, we propose to improve the robustness of NMT models with adversarial stab
In this paper, we present Neural Phrase-based Machine Translation (NPMT). Our method explicitly models the phrase structures in output sequences using Sleep-WAke Networks (SWAN), a recently proposed segmentation-based sequence modeling method. To mit
We present a simple method to incorporate syntactic information about the target language in a neural machine translation system by translating into linearized, lexicalized constituency trees. An experiment on the WMT16 German-English news translatio
Unsupervised neural machine translation(NMT) is associated with noise and errors in synthetic data when executing vanilla back-translations. Here, we explicitly exploits language model(LM) to drive construction of an unsupervised NMT system. This fea
Although neural machine translation (NMT) has advanced the state-of-the-art on various language pairs, the interpretability of NMT remains unsatisfactory. In this work, we propose to address this gap by focusing on understanding the input-output beha