ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Robustness through the Lens of Causality

72   0   0.0 ( 0 )
 نشر من قبل Yonggang Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The adversarial vulnerability of deep neural networks has attracted significant attention in machine learning. From a causal viewpoint, adversarial attacks can be considered as a specific type of distribution change on natural data. As causal reasoning has an instinct for modeling distribution change, we propose to incorporate causality into mitigating adversarial vulnerability. However, causal formulations of the intuition of adversarial attack and the development of robust DNNs are still lacking in the literature. To bridge this gap, we construct a causal graph to model the generation process of adversarial examples and define the adversarial distribution to formalize the intuition of adversarial attacks. From a causal perspective, we find that the label is spuriously correlated with the style (content-independent) information when an instance is given. The spurious correlation implies that the adversarial distribution is constructed via making the statistical conditional association between style information and labels drastically different from that in natural distribution. Thus, DNNs that fit the spurious correlation are vulnerable to the adversarial distribution. Inspired by the observation, we propose the adversarial distribution alignment method to eliminate the difference between the natural distribution and the adversarial distribution. Extensive experiments demonstrate the efficacy of the proposed method. Our method can be seen as the first attempt to leverage causality for mitigating adversarial vulnerability.



قيم البحث

اقرأ أيضاً

In this paper, we introduce adversarially robust streaming algorithms for central machine learning and algorithmic tasks, such as regression and clustering, as well as their more general counterparts, subspace embedding, low-rank approximation, and c oreset construction. For regression and other numerical linear algebra related tasks, we consider the row arrival streaming model. Our results are based on a simple, but powerful, observation that many importance sampling-based algorithms give rise to adversarial robustness which is in contrast to sketching based algorithms, which are very prevalent in the streaming literature but suffer from adversarial attacks. In addition, we show that the well-known merge and reduce paradigm in streaming is adversarially robust. Since the merge and reduce paradigm allows coreset constructions in the streaming setting, we thus obtain robust algorithms for $k$-means, $k$-median, $k$-center, Bregman clustering, projective clustering, principal component analysis (PCA) and non-negative matrix factorization. To the best of our knowledge, these are the first adversarially robust results for these problems yet require no new algorithmic implementations. Finally, we empirically confirm the robustness of our algorithms on various adversarial attacks and demonstrate that by contrast, some common existing algorithms are not robust. (Abstract shortened to meet arXiv limits)
This paper investigates the theory of robustness against adversarial attacks. It focuses on the family of randomization techniques that consist in injecting noise in the network at inference time. These techniques have proven effective in many contex ts, but lack theoretical arguments. We close this gap by presenting a theoretical analysis of these approaches, hence explaining why they perform well in practice. More precisely, we make two new contributions. The first one relates the randomization rate to robustness to adversarial attacks. This result applies for the general family of exponential distributions, and thus extends and unifies the previous approaches. The second contribution consists in devising a new upper bound on the adversarial generalization gap of randomized neural networks. We support our theoretical claims with a set of experiments.
124 - Maor Ivgi , Jonathan Berant 2021
Discrete adversarial attacks are symbolic perturbations to a language input that preserve the output label but lead to a prediction error. While such attacks have been extensively explored for the purpose of evaluating model robustness, their utility for improving robustness has been limited to offline augmentation only, i.e., given a trained model, attacks are used to generate perturbed (adversarial) examples, and the model is re-trained exactly once. In this work, we address this gap and leverage discrete attacks for online augmentation, where adversarial examples are generated at every step, adapting to the changing nature of the model. We also consider efficient attacks based on random sampling, that unlike prior work are not based on expensive search-based procedures. As a second contribution, we provide a general formulation for multiple search-based attacks from past work, and propose a new attack based on best-first search. Surprisingly, we find that random sampling leads to impressive gains in robustness, outperforming the commonly-used offline augmentation, while leading to a speedup at training time of ~10x. Furthermore, online augmentation with search-based attacks justifies the higher training cost, significantly improving robustness on three datasets. Last, we show that our proposed algorithm substantially improves robustness compared to prior methods.
Deep Neural Networks, despite their great success in diverse domains, are provably sensitive to small perturbations on correctly classified examples and lead to erroneous predictions. Recently, it was proposed that this behavior can be combatted by o ptimizing the worst case loss function over all possible substitutions of training examples. However, this can be prone to weighing unlikely substitutions higher, limiting the accuracy gain. In this paper, we study adversarial robustness through randomized perturbations, which has two immediate advantages: (1) by ensuring that substitution likelihood is weighted by the proximity to the original word, we circumvent optimizing the worst case guarantees and achieve performance gains; and (2) the calibrated randomness imparts differentially-private model training, which additionally improves robustness against adversarial attacks on the model outputs. Our approach uses a novel density-based mechanism based on truncated Gumbel noise, which ensures training on substitutions of both rare and dense words in the vocabulary while maintaining semantic similarity for model robustness.
Robustness issues arise in a variety of forms and are studied through multiple lenses in the machine learning literature. Neural networks lack adversarial robustness -- they are vulnerable to adversarial examples that through small perturbations to i nputs cause incorrect predictions. Further, trust is undermined when models give miscalibrated or unstable uncertainty estimates, i.e. the predicted probability is not a good indicator of how much we should trust our model and could vary greatly over multiple independent runs. In this paper, we study the connection between adversarial robustness, predictive uncertainty (calibration) and model uncertainty (stability) on multiple classification networks and datasets. We find that the inputs for which the model is sensitive to small perturbations (are easily attacked) are more likely to have poorly calibrated and unstable predictions. Based on this insight, we examine if calibration and stability can be improved by addressing those adversarially unrobust inputs. To this end, we propose Adversarial Robustness based Adaptive Label Smoothing (AR-AdaLS) that integrates the correlations of adversarial robustness and uncertainty into training by adaptively softening labels conditioned on how easily it can be attacked by adversarial examples. We find that our method, taking the adversarial robustness of the in-distribution data into consideration, leads to better calibration and stability over the model even under distributional shifts. In addition, AR-AdaLS can also be applied to an ensemble model to achieve the best calibration performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا