ﻻ يوجد ملخص باللغة العربية
Boundary based blackbox attack has been recognized as practical and effective, given that an attacker only needs to access the final model prediction. However, the query efficiency of it is in general high especially for high dimensional image data. In this paper, we show that such efficiency highly depends on the scale at which the attack is applied, and attacking at the optimal scale significantly improves the efficiency. In particular, we propose a theoretical framework to analyze and show three key characteristics to improve the query efficiency. We prove that there exists an optimal scale for projective gradient estimation. Our framework also explains the satisfactory performance achieved by existing boundary black-box attacks. Based on our theoretical framework, we propose Progressive-Scale enabled projective Boundary Attack (PSBA) to improve the query efficiency via progressive scaling techniques. In particular, we employ Progressive-GAN to optimize the scale of projections, which we call PSBA-PGAN. We evaluate our approach on both spatial and frequency scales. Extensive experiments on MNIST, CIFAR-10, CelebA, and ImageNet against different models including a real-world face recognition API show that PSBA-PGAN significantly outperforms existing baseline attacks in terms of query efficiency and attack success rate. We also observe relatively stable optimal scales for different models and datasets. The code is publicly available at https://github.com/AI-secure/PSBA.
Machine learning (ML), especially deep neural networks (DNNs) have been widely used in various applications, including several safety-critical ones (e.g. autonomous driving). As a result, recent research about adversarial examples has raised great co
Recent research on reinforcement learning (RL) has suggested that trained agents are vulnerable to maliciously crafted adversarial samples. In this work, we show how such samples can be generalised from White-box and Grey-box attacks to a strong Blac
Gradient estimation and vector space projection have been studied as two distinct topics. We aim to bridge the gap between the two by investigating how to efficiently estimate gradient based on a projected low-dimensional space. We first provide lowe
Domain adaptation helps transfer the knowledge gained from a labeled source domain to an unlabeled target domain. During the past few years, different domain adaptation techniques have been published. One common flaw of these approaches is that while
Deep neural networks have recently achieved tremendous success in image classification. Recent studies have however shown that they are easily misled into incorrect classification decisions by adversarial examples. Adversaries can even craft attacks