ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a density estimation algorithm called textit{Gradient Boosting Histogram Transform} (GBHT), where we adopt the textit{Negative Log Likelihood} as the loss function to make the boosting procedure available for the unsupervised tasks. From a learning theory viewpoint, we first prove fast convergence rates for GBHT with the smoothness assumption that the underlying density function lies in the space $C^{0,alpha}$. Then when the target density function lies in spaces $C^{1,alpha}$, we present an upper bound for GBHT which is smaller than the lower bound of its corresponding base learner, in the sense of convergence rates. To the best of our knowledge, we make the first attempt to theoretically explain why boosting can enhance the performance of its base learners for density estimation problems. In experiments, we not only conduct performance comparisons with the widely used KDE, but also apply GBHT to anomaly detection to showcase a further application of GBHT.
We investigate an algorithm named histogram transform ensembles (HTE) density estimator whose effectiveness is supported by both solid theoretical analysis and significant experimental performance. On the theoretical side, by decomposing the error te
We propose a novel algorithm for large-scale regression problems named histogram transform ensembles (HTE), composed of random rotations, stretchings, and translations. First of all, we investigate the theoretical properties of HTE when the regressio
Automatic machine learning performs predictive modeling with high performing machine learning tools without human interference. This is achieved by making machine learning applications parameter-free, i.e. only a dataset is provided while the complet
In this paper, we propose a gradient boosting algorithm for large-scale regression problems called textit{Gradient Boosted Binary Histogram Ensemble} (GBBHE) based on binary histogram partition and ensemble learning. From the theoretical perspective,
Residual Networks (ResNets) have become state-of-the-art models in deep learning and several theoretical studies have been devoted to understanding why ResNet works so well. One attractive viewpoint on ResNet is that it is optimizing the risk in a fu