ترغب بنشر مسار تعليمي؟ اضغط هنا

MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training

121   0   0.0 ( 0 )
 نشر من قبل Xu Tan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Symbolic music understanding, which refers to the understanding of music from the symbolic data (e.g., MIDI format, but not audio), covers many music applications such as genre classification, emotion classification, and music pieces matching. While good music representations are beneficial for these applications, the lack of training data hinders representation learning. Inspired by the success of pre-training models in natural language processing, in this paper, we develop MusicBERT, a large-scale pre-trained model for music understanding. To this end, we construct a large-scale symbolic music corpus that contains more than 1 million music songs. Since symbolic music contains more structural (e.g., bar, position) and diverse information (e.g., tempo, instrument, and pitch), simply adopting the pre-training techniques from NLP to symbolic music only brings marginal gains. Therefore, we design several mechanisms, including OctupleMIDI encoding and bar-level masking strategy, to enhance pre-training with symbolic music data. Experiments demonstrate the advantages of MusicBERT on four music understanding tasks, including melody completion, accompaniment suggestion, genre classification, and style classification. Ablation studies also verify the effectiveness of our designs of OctupleMIDI encoding and bar-level masking strategy in MusicBERT.



قيم البحث

اقرأ أيضاً

In natural language processing (NLP), the semantic similarity task requires large-scale, high-quality human-annotated labels for fine-tuning or evaluation. By contrast, in cases of music similarity, such labels are expensive to collect and largely de pendent on the annotators artistic preferences. Recent research has demonstrated that embedding calibration technique can greatly increase semantic similarity performance of the pre-trained language model without fine-tuning. However, it is yet unknown which calibration method is the best and how much performance improvement can be achieved. To address these issues, we propose using composer information to construct labels for automatically evaluating music similarity. Under this paradigm, we discover the optimal combination of embedding calibration which achieves superior metrics than the baseline methods.
193 - Yi Ren , Jinzheng He , Xu Tan 2020
In pop music, accompaniments are usually played by multiple instruments (tracks) such as drum, bass, string and guitar, and can make a song more expressive and contagious by arranging together with its melody. Previous works usually generate multiple tracks separately and the music notes from different tracks not explicitly depend on each other, which hurts the harmony modeling. To improve harmony, in this paper, we propose a novel MUlti-track MIDI representation (MuMIDI), which enables simultaneous multi-track generation in a single sequence and explicitly models the dependency of the notes from different tracks. While this greatly improves harmony, unfortunately, it enlarges the sequence length and brings the new challenge of long-term music modeling. We further introduce two new techniques to address this challenge: 1) We model multiple note attributes (e.g., pitch, duration, velocity) of a musical note in one step instead of multiple steps, which can shorten the length of a MuMIDI sequence. 2) We introduce extra long-context as memory to capture long-term dependency in music. We call our system for pop music accompaniment generation as PopMAG. We evaluate PopMAG on multiple datasets (LMD, FreeMidi and CPMD, a private dataset of Chinese pop songs) with both subjective and objective metrics. The results demonstrate the effectiveness of PopMAG for multi-track harmony modeling and long-term context modeling. Specifically, PopMAG wins 42%/38%/40% votes when comparing with ground truth musical pieces on LMD, FreeMidi and CPMD datasets respectively and largely outperforms other state-of-the-art music accompaniment generation models and multi-track MIDI representations in terms of subjective and objective metrics.
Score-based generative models and diffusion probabilistic models have been successful at generating high-quality samples in continuous domains such as images and audio. However, due to their Langevin-inspired sampling mechanisms, their application to discrete and sequential data has been limited. In this work, we present a technique for training diffusion models on sequential data by parameterizing the discrete domain in the continuous latent space of a pre-trained variational autoencoder. Our method is non-autoregressive and learns to generate sequences of latent embeddings through the reverse process and offers parallel generation with a constant number of iterative refinement steps. We apply this technique to modeling symbolic music and show strong unconditional generation and post-hoc conditional infilling results compared to autoregressive language models operating over the same continuous embeddings.
Deep learning is very data hungry, and supervised learning especially requires massive labeled data to work well. Machine listening research often suffers from limited labeled data problem, as human annotations are costly to acquire, and annotations for audio are time consuming and less intuitive. Besides, models learned from labeled dataset often embed biases specific to that particular dataset. Therefore, unsupervised learning techniques become popular approaches in solving machine listening problems. Particularly, a self-supervised learning technique utilizing reconstructions of multiple hand-crafted audio features has shown promising results when it is applied to speech domain such as emotion recognition and automatic speech recognition (ASR). In this paper, we apply self-supervised and multi-task learning methods for pre-training music encoders, and explore various design choices including encoder architectures, weighting mechanisms to combine losses from multiple tasks, and worker selections of pretext tasks. We investigate how these design choices interact with various downstream music classification tasks. We find that using various music specific workers altogether with weighting mechanisms to balance the losses during pre-training helps improve and generalize to the downstream tasks.
Automatic song writing aims to compose a song (lyric and/or melody) by machine, which is an interesting topic in both academia and industry. In automatic song writing, lyric-to-melody generation and melody-to-lyric generation are two important tasks, both of which usually suffer from the following challenges: 1) the paired lyric and melody data are limited, which affects the generation quality of the two tasks, considering a lot of paired training data are needed due to the weak correlation between lyric and melody; 2) Strict alignments are required between lyric and melody, which relies on specific alignment modeling. In this paper, we propose SongMASS to address the above challenges, which leverages masked sequence to sequence (MASS) pre-training and attention based alignment modeling for lyric-to-melody and melody-to-lyric generation. Specifically, 1) we extend the original sentence-level MASS pre-training to song level to better capture long contextual information in music, and use a separate encoder and decoder for each modality (lyric or melody); 2) we leverage sentence-level attention mask and token-level attention constraint during training to enhance the alignment between lyric and melody. During inference, we use a dynamic programming strategy to obtain the alignment between each word/syllable in lyric and note in melody. We pre-train SongMASS on unpaired lyric and melody datasets, and both objective and subjective evaluations demonstrate that SongMASS generates lyric and melody with significantly better quality than the baseline method without pre-training or alignment constraint.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا