ﻻ يوجد ملخص باللغة العربية
The crystal structure and magnetic property of the single crystalline hexagonal rare-earth indium oxides GdInO$_3$ have been studied by combing experiments and model calculations. The two inequivalent Gd$^{3+}$ ions form the centered honeycomb lattice, which consists of honeycomb and triangular sublattices. The dc magnetic susceptibility and specific heat measurements suggest two antiferromagnetic phase transitions at $T_textrm{N1}$ = 2.3 K and $T_textrm{N2}$ = 1.02 K. An inflection point is observed in the isothermal magnetization curve, which implies an up-up-down phase with a 1/3 magnetization plateau. We also observe a large magnetic entropy change originated from the magnetic frustration in GdInO$_3$. By considering a classical spin Hamiltonian, we establish the ground state phase diagram, which suggests that GdInO$_3$ has a weak easy-axis anisotropy and is close to the equilateral triangular-lattice system. The theoretical ground-state phase diagram may be used as a reference in NMR, ESR, or $mu$SR experiments in future.
Spin liquid ground states are predicted to arise within several distinct scenarios in condensed matter physics. The observation of these disordered magnetic states is particularly pervasive amongst a class of materials known as frustrated magnets, in
We successfully synthesize single crystals of the verdazyl radical $alpha$-2,3,5-Cl$_3$-V. $Ab$ $initio$ molecular orbital calculations indicate that the two dominant antiferromagnetic interactions, $J_{rm{1}}$ and $J_{rm{2}}$ ($alpha =J_{rm{2}}/J_{r
We have carried out $^{63,65}$Cu NMR spectra measurements in magnetic field up to about 45~T on single crystal of a multiferroic triangular antiferromagnet CuCrO$_2$. The measurements were performed for magnetic fields aligned along the crystal $c$-a
Magnetization measurements on single-crystal cubic SrCuTe$_2$O$_6$ with an applied magnetic field of along three inequivalent high symmetry directions $[100]$, $[110]$, and $[111]$ reveal weak magnetic anisotropy. The fits of the magnetic susceptibil
A fundamental difference between antiferromagnets and ferromagnets is the lack of linear coupling to a uniform magnetic field due to the staggered order parameter. Such coupling is possible via the Dzyaloshinskii-Moriya (DM) interaction but at the ex