ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant magnetic response of a two-dimensional antiferromagnet

327   0   0.0 ( 0 )
 نشر من قبل Lin Hao
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A fundamental difference between antiferromagnets and ferromagnets is the lack of linear coupling to a uniform magnetic field due to the staggered order parameter. Such coupling is possible via the Dzyaloshinskii-Moriya (DM) interaction but at the expense of reduced antiferromagnetic (AFM) susceptibility due to the canting-induced spin anisotropy. We solve this long-standing problem with a top-down approach that utilizes spin-orbit coupling in the presence of a hidden SU(2) symmetry. We demonstrate giant AFM responses to sub-Tesla external fields by exploiting the extremely strong two-dimensional critical fluctuations preserved under a symmetry-invariant exchange anisotropy, which is built into a square-lattice artificially synthesized as a superlattice of SrIrO3 and SrTiO3. The observed field-induced logarithmic increase of the ordering temperature enables highly efficient control of the AFM order. As antiferromagnets promise to afford switching speed and storage security far beyond ferromagnets, our symmetry-invariant approach unleashes the great potential of functional antiferromagnets.

قيم البحث

اقرأ أيضاً

Spin dynamics of the square lattice Heisenberg antiferromagnet, BaMnGeO, is studied by a combination of bulk measurements, neutron diffraction, and inelastic neutron scattering techniques. Easy plane type antiferromagnetic order is identified at $T l e 4.0$ K. The exchange interactions are estimated as $J_1$ = 27.8(3)${mu}$eV and $J_2$ = 1.0(1) ${mu}$eV, and the saturation field $H_{rm C}$ is 9.75 T. Magnetic excitation measurements with high experimental resolution setup by triple axis neutron spectrometer reveals the instability of one magnon excitation in the field range of $0.7H_{rm C} lesssim H lesssim 0.85H_{rm C}$.
We have carried out $^{63,65}$Cu NMR spectra measurements in magnetic field up to about 45~T on single crystal of a multiferroic triangular antiferromagnet CuCrO$_2$. The measurements were performed for magnetic fields aligned along the crystal $c$-a xis. Field and temperature evolution of the spectral shape demonstrates a number of phase transitions. It was found that the 3D magnetic ordering takes place in the low field range ($Hlesssim15$~T). At higher fields magnetic structures form within individual triangular planes whereas the spin directions of the magnetic ions from neighboring planes are not correlated. It is established that the 2D-3D transition is hysteretic in field and temperature. Lineshape analysis reveals several possible magnetic structures existing within individual planes for different phases of CuCrO$_2$. Within certain regions on the magnetic H-T phase diagram of CuCrO$_2$ a 3D magnetic ordering with tensor order parameter is expected.
The crystal structure and magnetic property of the single crystalline hexagonal rare-earth indium oxides GdInO$_3$ have been studied by combing experiments and model calculations. The two inequivalent Gd$^{3+}$ ions form the centered honeycomb lattic e, which consists of honeycomb and triangular sublattices. The dc magnetic susceptibility and specific heat measurements suggest two antiferromagnetic phase transitions at $T_textrm{N1}$ = 2.3 K and $T_textrm{N2}$ = 1.02 K. An inflection point is observed in the isothermal magnetization curve, which implies an up-up-down phase with a 1/3 magnetization plateau. We also observe a large magnetic entropy change originated from the magnetic frustration in GdInO$_3$. By considering a classical spin Hamiltonian, we establish the ground state phase diagram, which suggests that GdInO$_3$ has a weak easy-axis anisotropy and is close to the equilateral triangular-lattice system. The theoretical ground-state phase diagram may be used as a reference in NMR, ESR, or $mu$SR experiments in future.
217 - Y. Tokiwa , T. Radu , R. Coldea 2006
We report magnetization and specific heat measurements in the 2D frustrated spin-1/2 Heisenberg antiferromagnet Cs2CuCl4 at temperatures down to 0.05 K and high magnetic fields up to 11.5 T applied along a, b and c-axes. The low-field susceptibility chi (T) M/B shows a broad maximum around 2.8 K characteristic of short-range antiferromagnetic correlations and the overall temperature dependence is well described by high temperature series expansion calculations for the partially frustrated triangular lattice with J=4.46 K and J/J=1/3. At much lower temperatures (< 0.4 K) and in in-plane field (along b and c-axes) several new intermediate-field ordered phases are observed in-between the low-field incommensurate spiral and the high-field saturated ferromagnetic state. The ground state energy extracted from the magnetization curve shows strong zero-point quantum fluctuations in the ground state at low and intermediate fields.
We present an investigation of the effect of randomizing exchange strengths in the $S=1/2$ square lattice quasi-two-dimensional quantum Heisenberg antiferromagnet (QuinH)$_2$Cu(Cl$_{x}$Br$_{1-x}$)$_{4}cdot$2H$_2$O (QuinH$=$Quinolinium, C$_9$H$_8$N$^+ $), with $0leq x leq 1$. Pulsed-field magnetization measurements allow us to estimate an effective in-plane exchange strength $J$ in a regime where exchange fosters short-range order, while the temperature $T_{mathrm{N}}$ at which long range order (LRO) occurs is found using muon-spin relaxation, allowing us to construct a phase diagram for the series. We evaluate the effectiveness of disorder in suppressing $T_{mathrm{N}}$ and the ordered moment size and find an extended disordered phase in the region $0.4 lesssim x lesssim 0.8$ where no magnetic order occurs, driven by quantum effects of the exchange randomness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا