ترغب بنشر مسار تعليمي؟ اضغط هنا

CNO dredge-up in a sample of APOGEE/Kepler red giants: Tests of stellar models and Galactic evolutionary trends of N/O and C/N

81   0   0.0 ( 0 )
 نشر من قبل Fiorenzo Vincenzo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Surface abundances of C, N, and O in red giants are affected by processed material mixed into the stars convective envelopes. Using a sample of $sim 5100$ stars with elemental abundances from APOGEE and asteroseismic masses from {it Kepler}, we test theoretical stellar models that predict this mixing, then apply these models to derive birth C, N, and O abundances for these stars. Our models with standard mixing can reproduce the observed trends to within plausible uncertainties in the birth abundances. Some models with extra mixing processes fail, predicting trends with surface gravity or evolutionary state that are not observed. Applying mixing corrections to the APOGEE abundances removes the observed age-dependence of log(N/O) and log(C/N), but it leaves trends of log(N/O) and log(C/N) with metallicity, as expected based on nucleosynthesis models. The stellar N/O trend agrees well with Dopita et al.s calibration of gas phase log(N/O) with metallicity, and with gas phase trends in the MaNGA integral field survey of nearby galaxies. We also find a substantial separation in birth [N/Mg] ratios between high-[$alpha$/Fe] (thick disc) stars and low-[$alpha$/Fe] (thin disc) stars. We find a smaller but still clear separation for [C/Mg]. The trends of birth C and N abundances with [Fe/H] and [$alpha$/Fe] could affect spectroscopic age estimates for red giants that rely on the observed C/N ratio as a diagnostic of stellar mass.



قيم البحث

اقرأ أيضاً

The contribution of dissolved globular clusters (GCs) to the stellar content of the Galactic halo is a key constraint on models for GC formation and destruction, and the mass assembly history of the Milky Way. Earlier results from APOGEE pointed to a large contribution of destroyed GCs to the stellar content of the inner halo, by as much as 25$%$, which is an order of magnitude larger than previous estimates for more distant regions of the halo. We set out to measure the ratio between N-rich and normal halo field stars, as a function of distance, by performing density modelling of halo field populations in APOGEE DR16. Our results show that at 1.5 kpc from the Galactic Centre, N-rich stars contribute a much higher 16.8$^{+10.0}_{-7.0}$$%$ fraction to the total stellar halo mass budget than the 2.7$^{+1.0}_{-0.8}$$%$ ratio contributed at 10 kpc. Under the assumption that N-rich stars are former GC members that now reside in the stellar halo field, and assuming the ratio between first-and second-population GC stars being 1:2, we estimate a total contribution from disrupted GC stars of the order of 27.5$^{+15.4}_{-11.5}$$%$ at r = 1.5 kpc and 4.2$^{+1.5}_{-1.3}$$%$ at r = 10 kpc. Furthermore, since our methodology requires fitting a density model to the stellar halo, we integrate such density within a spherical shell from 1.5-15 kpc in radius, and find a total stellar mass arising from dissolved and/or evaporated GCs of $M_{mathrm{GC,total}}$ = 9.6$^{+4.0}_{-2.6}$ $times$ 10$^{7}$ M$odot$.
With the advent of the space missions CoRoT and Kepler, it has become feasible to determine precise asteroseismic masses and ages for large samples of red-giant stars. In this paper, we present the CoRoGEE dataset -- obtained from CoRoT lightcurves f or 606 red giant stars in two fields of the Galactic disc which have been co-observed for an ancillary project of APOGEE. We have used the Bayesian parameter estimation code PARAM to calculate distances, extinctions, masses, and ages for these stars in a homogeneous analysis, resulting in relative statistical uncertainties of $sim2%$ in distance, $sim4%$ in radius, $sim9%$ in mass and $sim25%$ in age. We also assess systematic age uncertainties due to different input physics and mass loss. We discuss the correlation between ages and chemical abundance patterns of field stars over a large radial range of the Milky Ways disc (5 kpc $<R_{rm Gal}<$ 14 kpc), focussing on the [$alpha$/Fe]-[Fe/H]-age plane in five radial bins of the Galactic disc. We find an overall agreement with the expectations of chemical-evolution models computed before the present data were available, especially for the outer regions. However, our data also indicate that a significant fraction of stars now observed near and beyond the Solar Neighbourhood migrated from inner regions. Mock CoRoGEE observations of a chemo-dynamical Milky Way disc model show that the number of high-metallicity stars in the outer disc is too high to be accounted for even by the strong radial mixing present in the model. The mock observations also reveal that the age distribution of the [$alpha$/Fe]-enhanced sequence in the CoRoGEE inner-disc field is much broader than expected from a combination of radial mixing and observational errors. We suggest that a thick disc/bulge component that formed stars for more than 3 Gyr may account for these discrepancies.
We present chemical abundance analysis of a sample of 15 red giant branch (RGB) stars of the Globular Cluster NGC~1851 distributed along the two RGBs of the (v, v-y) CMD. We determined abundances for C+N+O, Na, $alpha$, iron-peak, and s-elements. We found that the two RGB populations significantly differ in their light (N,O,Na) and s-element content. On the other hand, they do not show any significant difference in their $alpha$ and iron-peak element content. More importantly, the two RGB populations do not show any significant difference in their total C+N+O content. Our results do not support previous hypotheses suggesting that the origin of the two RGBs and the two subgiant branches of the cluster is related to a different content of either $alpha$ (including Ca) or iron-peak elements, or C+N+O abundance, due to a second generation polluted by SNeII.
The Hipparcos orbiting observatory has revealed a large number of helium-core-burning clump stars in the Galactic field. These low-mass stars exhibit signatures of extra-mixing processes that require modeling beyond the first dredge-up of standard mo dels. The 12C/13C ratio is the most robust diagnostic of deep mixing, because it is insensitive to the adopted stellar parameters. In this work we present 12C/13C determinations in a sample of 34 Galactic clump stars as well as abundances of nitrogen, carbon and oxygen. Abundances of carbon were studied using the C2 Swan (0,1) band head at 5635.5 A. The wavelength interval 7980-8130 A with strong CN features was analysed in order to determine nitrogen abundances and 12C/13C isotope ratios. The oxygen abundances were determined from the [O I] line at 6300 A. Compared with the Sun and dwarf stars of the Galactic disk, mean abundances in the investigated clump stars suggest that carbon is depleted by about 0.2 dex, nitrogen is enhanced by 0.2 dex and oxygen is close to abundances in dwarfs. Comparisons to evolutionary models show that the stars fall into two groups: the one is of first ascent giants with carbon isotope ratios altered according to the first dredge-up prediction, and the other one is of helium-core-burning stars with carbon isotope ratios altered by extra mixing. The stars investigated fall to these groups in approximately equal numbers.
We present [C/N]-[Fe/H] abundance trends from the SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey, Data Release 14 (DR14), for red giant branch stars across the Milky Way Galaxy (MW, 3 kpc $<$ R $<$ 15 kpc). The carbon- to-nitrogen ratio (often expressed as [C/N]) can indicate the mass of a red giant star, from which an age can be inferred. Using masses and ages derived by Martig et al., we demonstrate that we are able to interpret the DR14 [C/N]-[Fe/H] abundance distributions as trends in age-[Fe/H] space. Our results show that an anti-correlation between age and metallicity, which is predicted by simple chemical evolution models, is not present at any Galactic zone. Stars far from the plane ($|$Z$|$ $>$ 1 kpc) exhibit a radial gradient in [C/N] ($sim$ $-$0.04 dex/kpc). The [C/N] dispersion increases toward the plane ($sigma_{[C/N]}$ = 0.13 at $|$Z$|$ $>$ 1 kpc to $sigma_{[C/N]}$ = 0.18 dex at $|$Z$|$ $<$ 0.5 kpc). We measure a disk metallicity gradient for the youngest stars (age $<$ 2.5 Gyr) of $-$0.060 dex/kpc from 6 kpc to 12 kpc, which is in agreement with the gradient found using young CoRoGEE stars by Anders et al. Older stars exhibit a flatter gradient ($-$0.016 dex/kpc), which is predicted by simulations in which stars migrate from their birth radii. We also find that radial migration is a plausible explanation for the observed upturn of the [C/N]-[Fe/H] abundance trends in the outer Galaxy, where the metal-rich stars are relatively enhanced in [C/N].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا