ﻻ يوجد ملخص باللغة العربية
Surface abundances of C, N, and O in red giants are affected by processed material mixed into the stars convective envelopes. Using a sample of $sim 5100$ stars with elemental abundances from APOGEE and asteroseismic masses from {it Kepler}, we test theoretical stellar models that predict this mixing, then apply these models to derive birth C, N, and O abundances for these stars. Our models with standard mixing can reproduce the observed trends to within plausible uncertainties in the birth abundances. Some models with extra mixing processes fail, predicting trends with surface gravity or evolutionary state that are not observed. Applying mixing corrections to the APOGEE abundances removes the observed age-dependence of log(N/O) and log(C/N), but it leaves trends of log(N/O) and log(C/N) with metallicity, as expected based on nucleosynthesis models. The stellar N/O trend agrees well with Dopita et al.s calibration of gas phase log(N/O) with metallicity, and with gas phase trends in the MaNGA integral field survey of nearby galaxies. We also find a substantial separation in birth [N/Mg] ratios between high-[$alpha$/Fe] (thick disc) stars and low-[$alpha$/Fe] (thin disc) stars. We find a smaller but still clear separation for [C/Mg]. The trends of birth C and N abundances with [Fe/H] and [$alpha$/Fe] could affect spectroscopic age estimates for red giants that rely on the observed C/N ratio as a diagnostic of stellar mass.
The contribution of dissolved globular clusters (GCs) to the stellar content of the Galactic halo is a key constraint on models for GC formation and destruction, and the mass assembly history of the Milky Way. Earlier results from APOGEE pointed to a
With the advent of the space missions CoRoT and Kepler, it has become feasible to determine precise asteroseismic masses and ages for large samples of red-giant stars. In this paper, we present the CoRoGEE dataset -- obtained from CoRoT lightcurves f
We present chemical abundance analysis of a sample of 15 red giant branch (RGB) stars of the Globular Cluster NGC~1851 distributed along the two RGBs of the (v, v-y) CMD. We determined abundances for C+N+O, Na, $alpha$, iron-peak, and s-elements. We
The Hipparcos orbiting observatory has revealed a large number of helium-core-burning clump stars in the Galactic field. These low-mass stars exhibit signatures of extra-mixing processes that require modeling beyond the first dredge-up of standard mo
We present [C/N]-[Fe/H] abundance trends from the SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey, Data Release 14 (DR14), for red giant branch stars across the Milky Way Galaxy (MW, 3 kpc $<$ R $<$ 15 kpc). The carbon-