ترغب بنشر مسار تعليمي؟ اضغط هنا

The contribution of N-rich stars to the Galactic stellar halo using APOGEE red giants

71   0   0.0 ( 0 )
 نشر من قبل Daniel Horta Darrington
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The contribution of dissolved globular clusters (GCs) to the stellar content of the Galactic halo is a key constraint on models for GC formation and destruction, and the mass assembly history of the Milky Way. Earlier results from APOGEE pointed to a large contribution of destroyed GCs to the stellar content of the inner halo, by as much as 25$%$, which is an order of magnitude larger than previous estimates for more distant regions of the halo. We set out to measure the ratio between N-rich and normal halo field stars, as a function of distance, by performing density modelling of halo field populations in APOGEE DR16. Our results show that at 1.5 kpc from the Galactic Centre, N-rich stars contribute a much higher 16.8$^{+10.0}_{-7.0}$$%$ fraction to the total stellar halo mass budget than the 2.7$^{+1.0}_{-0.8}$$%$ ratio contributed at 10 kpc. Under the assumption that N-rich stars are former GC members that now reside in the stellar halo field, and assuming the ratio between first-and second-population GC stars being 1:2, we estimate a total contribution from disrupted GC stars of the order of 27.5$^{+15.4}_{-11.5}$$%$ at r = 1.5 kpc and 4.2$^{+1.5}_{-1.3}$$%$ at r = 10 kpc. Furthermore, since our methodology requires fitting a density model to the stellar halo, we integrate such density within a spherical shell from 1.5-15 kpc in radius, and find a total stellar mass arising from dissolved and/or evaporated GCs of $M_{mathrm{GC,total}}$ = 9.6$^{+4.0}_{-2.6}$ $times$ 10$^{7}$ M$odot$.

قيم البحث

اقرأ أيضاً

Surface abundances of C, N, and O in red giants are affected by processed material mixed into the stars convective envelopes. Using a sample of $sim 5100$ stars with elemental abundances from APOGEE and asteroseismic masses from {it Kepler}, we test theoretical stellar models that predict this mixing, then apply these models to derive birth C, N, and O abundances for these stars. Our models with standard mixing can reproduce the observed trends to within plausible uncertainties in the birth abundances. Some models with extra mixing processes fail, predicting trends with surface gravity or evolutionary state that are not observed. Applying mixing corrections to the APOGEE abundances removes the observed age-dependence of log(N/O) and log(C/N), but it leaves trends of log(N/O) and log(C/N) with metallicity, as expected based on nucleosynthesis models. The stellar N/O trend agrees well with Dopita et al.s calibration of gas phase log(N/O) with metallicity, and with gas phase trends in the MaNGA integral field survey of nearby galaxies. We also find a substantial separation in birth [N/Mg] ratios between high-[$alpha$/Fe] (thick disc) stars and low-[$alpha$/Fe] (thin disc) stars. We find a smaller but still clear separation for [C/Mg]. The trends of birth C and N abundances with [Fe/H] and [$alpha$/Fe] could affect spectroscopic age estimates for red giants that rely on the observed C/N ratio as a diagnostic of stellar mass.
With the advent of the space missions CoRoT and Kepler, it has become feasible to determine precise asteroseismic masses and ages for large samples of red-giant stars. In this paper, we present the CoRoGEE dataset -- obtained from CoRoT lightcurves f or 606 red giant stars in two fields of the Galactic disc which have been co-observed for an ancillary project of APOGEE. We have used the Bayesian parameter estimation code PARAM to calculate distances, extinctions, masses, and ages for these stars in a homogeneous analysis, resulting in relative statistical uncertainties of $sim2%$ in distance, $sim4%$ in radius, $sim9%$ in mass and $sim25%$ in age. We also assess systematic age uncertainties due to different input physics and mass loss. We discuss the correlation between ages and chemical abundance patterns of field stars over a large radial range of the Milky Ways disc (5 kpc $<R_{rm Gal}<$ 14 kpc), focussing on the [$alpha$/Fe]-[Fe/H]-age plane in five radial bins of the Galactic disc. We find an overall agreement with the expectations of chemical-evolution models computed before the present data were available, especially for the outer regions. However, our data also indicate that a significant fraction of stars now observed near and beyond the Solar Neighbourhood migrated from inner regions. Mock CoRoGEE observations of a chemo-dynamical Milky Way disc model show that the number of high-metallicity stars in the outer disc is too high to be accounted for even by the strong radial mixing present in the model. The mock observations also reveal that the age distribution of the [$alpha$/Fe]-enhanced sequence in the CoRoGEE inner-disc field is much broader than expected from a combination of radial mixing and observational errors. We suggest that a thick disc/bulge component that formed stars for more than 3 Gyr may account for these discrepancies.
We present a study of the luminosity density distribution of the Galactic bar using number counts of red clump giants (RCGs) from the OGLE-III survey. The data were recently published by Nataf et al. (2013) for 9019 fields towards the bulge and have $2.94times 10^6$ RC stars over a viewing area of $90.25 ,textrm{deg}^2$. The data include the number counts, mean distance modulus ($mu$), dispersion in $mu$ and full error matrix, from which we fit the data with several tri-axial parametric models. We use the Markov Chain Monte Carlo (MCMC) method to explore the parameter space and find that the best-fit model is the $E_3$ model, with the distance to the GC is 8.13 kpc, the ratio of semi-major and semi-minor bar axis scale lengths in the Galactic plane $x_{0},y_{0}$, and vertical bar scale length $z_0$, is $x_0:y_0:z_0 approx 1.00:0.43:0.40$ (close to being prolate). The scale length of the stellar density profile along the bars major axis is $sim$ 0.67 kpc and has an angle of $29.4^circ$, slightly larger than the value obtained from a similar study based on OGLE-II data. The number of estimated RC stars within the field of view is $2.78 times 10^6$, which is systematically lower than the observed value. We subtract the smooth parametric model from the observed counts and find that the residuals are consistent with the presence of an X-shaped structure in the Galactic centre, the excess to the estimated mass content is $sim 5.8%$. We estimate the total mass of the bar is $sim 1.8 times 10^{10} M_odot$. Our results can be used as a key ingredient to construct new density models of the Milky Way and will have implications on the predictions of the optical depth to gravitational microlensing and the patterns of hydrodynamical gas flow in the Milky Way.
The Galactic Center region, including the nuclear disk, has until recently been largely avoided in chemical census studies because of extreme extinction and stellar crowding. Making use of the latest APOGEE data release (DR16), we are able for the fi rst time to study cool AGB stars and supergiants in this region. The stellar parameters of five known AGB stars and one supergiant star (VR 5-7) show that their location is well above the tip of the RGB.We study metallicities of 157 M giants situated within 150 pc of the Galactic center from observations obtained by the APOGEE survey with reliable stellar parameters from the APOGEE/ASPCAP pipeline making use of the cool star grid down to 3200 K. Distances, interstellar extinction values, and radial velocities were checked to confirm that these stars are indeed situated in the Galactic Center region. We detect a clear bimodal structure in the metallicity distribution function, with a dominant metal-rich peak of [Fe/H] ~ +0.3 dex and a metal-poor peak around [Fe/H]= -0.5 dex, which is 0.2 dex poorer than Baades Window. The alpha-elements Mg, Si, Ca, and O show a similar trend to the Galactic Bulge. The metal-poor component is enhanced in the alpha-elements, suggesting that this population could be associated with the classical bulge and a fast formation scenario. We find a clear signature of a rotating nuclear stellar disk and a significant fraction of high velocity stars with $rm v_{gal} > 300,km/s$; the metal-rich stars show a much higher rotation velocity ($rm sim 200,km/s$) with respect to the metal-poor stars ($rm sim 140,km/s$). The chemical abundances as well as the metallicity distribution function suggest that the nuclear stellar disc and the nuclear star cluster show distinct chemical signatures and might be formed differently.
110 - Azadeh Fattahi 2018
Using the astrometry from the ESAs Gaia mission, previous works have shown that the Milky Way stellar halo is dominated by metal-rich stars on highly eccentric orbits. To shed light on the nature of this prominent halo component, we have analysed 28 Galaxy analogues in the Auriga suite of cosmological hydrodynamics zoom-in simulations. Some three quarters of the Auriga galaxies contain significant components with high radial velocity anisotropy, beta > 0.6. However, only in one third of the hosts do the high-beta stars contribute significantly to the accreted stellar halo overall, similar to what is observed in the Milky Way. For this particular subset we reveal the origin of the dominant stellar halo component with high metallicity, [Fe/H]~-1, and high orbital anisotropy, beta>0.8, by tracing their stars back to the epoch of accretion. It appears that, typically, these stars come from a single dwarf galaxy with a stellar mass of order of 10^9-10^10 Msol that merged around 6-10 Gyr ago, causing a sharp increase in the halo mass. Our study therefore establishes a firm link between the excess of radially anisotropic stellar debris in the Milky Way halo and an ancient head-on collision between the young Milky Way and a massive dwarf galaxy
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا