ﻻ يوجد ملخص باللغة العربية
The time of the first occurrence of a threshold crossing event in a stochastic process, known as the first passage time, is of interest in many areas of sciences and engineering. Conventionally, there is an implicit assumption that the notional sensor monitoring the threshold crossing event is always active. In many realistic scenarios, the sensor monitoring the stochastic process works intermittently. Then, the relevant quantity of interest is the $textit{first detection time}$, which denotes the time when the sensor detects the threshold crossing event for the first time. In this work, a birth-death process monitored by a random intermittent sensor is studied, for which the first detection time distribution is obtained. In general, it is shown that the first detection time is related to, and is obtainable from, the first passage time distribution. Our analytical results display an excellent agreement with simulations. Further, this framework is demonstrated in several applications -- the SIS compartmental and logistic models, and birth-death processes with resetting. Finally, we solve the practically relevant problem of inferring the first passage time distribution from the first detection time.
We investigate classic diffusion with the added feature that a diffusing particle is reset to its starting point each time the particle reaches a specified threshold. In an infinite domain, this process is non-stationary and its probability distribut
We study the kinetics for the search of an immobile target by randomly moving searchers that detect it only upon encounter. The searchers perform intermittent random walks on a one-dimensional lattice. Each searcher can step on a nearest neighbor sit
We study the effects of an intermittent harmonic potential of strength $mu = mu_0 u$ -- that switches on and off stochastically at a constant rate $gamma$, on an overdamped Brownian particle with damping coefficient $ u$. This can be thought of as a
In noisy environments such as the cell, many processes involve target sites that are often hidden or inactive, and thus not always available for reaction with diffusing entities. To understand reaction kinetics in these situations, we study the first
We study the non-Markovian random continuous processes described by the Mori-Zwanzig equation. As a starting point, we use the Markovian Gaussian Ornstein-Uhlenbeck process and introduce an integral memory term depending on the past of the process in