ترغب بنشر مسار تعليمي؟ اضغط هنا

First hitting times to intermittent targets

70   0   0.0 ( 0 )
 نشر من قبل Denis Boyer
 تاريخ النشر 2019
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In noisy environments such as the cell, many processes involve target sites that are often hidden or inactive, and thus not always available for reaction with diffusing entities. To understand reaction kinetics in these situations, we study the first hitting time statistics of a Brownian particle searching for a target site that switches stochastically between visible and hidden phases. At high crypticity, an unexpected rate limited power-law regime emerges for the first hitting time density, which markedly differs from the classic $t^{-3/2}$ scaling for steady targets. Our problem admits an asymptotic mapping onto a mixed, or Robin, boundary condition. Similar results are obtained with non-Markov targets and particles diffusing anomalously.



قيم البحث

اقرأ أيضاً

We generalize the notion of strong stationary time and we give a representation formula for the hitting time to a target set in the general case of non-reversible Markov processes.
103 - F.Manzo , E.Scoppola 2018
In the setting of non-reversible Markov chains on finite or countable state space, exact results on the distribution of the first hitting time to a given set $G$ are obtained. A new notion of strong metastability time is introduced to describe the lo cal relaxation time. This time is defined via a generalization of the strong stationary time to a conditionally strong quasi-stationary time(CSQST). Rarity of the target set $G$ is not required and the initial distribution can be completely general. The results clarify the the role played by the initial distribution on the exponential law; they are used to give a general notion of metastability and to discuss the relation between the exponential distribution of the first hitting time and metastability.
For the last ten years, almost every theoretical result concerning the expected run time of a randomized search heuristic used drift theory, making it the arguably most important tool in this domain. Its success is due to its ease of use and its powe rful result: drift theory allows the user to derive bounds on the expected first-hitting time of a random process by bounding expected local changes of the process -- the drift. This is usually far easier than bounding the expected first-hitting time directly. Due to the widespread use of drift theory, it is of utmost importance to have the best drift theorems possible. We improve the fundamental additive, multiplicative, and variable drift theorems by stating them in a form as general as possible and providing examples of why the restrictions we keep are still necessary. Our additive drift theorem for upper bounds only requires the process to be nonnegative, that is, we remove unnecessary restrictions like a finite, discrete, or bounded search space. As corollaries, the same is true for our upper bounds in the case of variable and multiplicative drift.
76 - Denis S. Grebenkov 2020
We investigate the statistics of encounters of a diffusing particle with different subsets of the boundary of a confining domain. The encounters with each subset are characterized by the boundary local time on that subset. We extend a recently propos ed approach to express the joint probability density of the particle position and of its multiple boundary local times via a multi-dimensional Laplace transform of the conventional propagator satisfying the diffusion equation with mixed Robin boundary conditions. In the particular cases of an interval, a circular annulus and a spherical shell, this representation can be explicitly inverted to access the statistics of two boundary local times. We provide the exact solutions and their probabilistic interpretation for the case of an interval and sketch their derivation for two other cases. We also obtain the distributions of various associated first-passage times and discuss their applications.
The time of the first occurrence of a threshold crossing event in a stochastic process, known as the first passage time, is of interest in many areas of sciences and engineering. Conventionally, there is an implicit assumption that the notional senso r monitoring the threshold crossing event is always active. In many realistic scenarios, the sensor monitoring the stochastic process works intermittently. Then, the relevant quantity of interest is the $textit{first detection time}$, which denotes the time when the sensor detects the threshold crossing event for the first time. In this work, a birth-death process monitored by a random intermittent sensor is studied, for which the first detection time distribution is obtained. In general, it is shown that the first detection time is related to, and is obtainable from, the first passage time distribution. Our analytical results display an excellent agreement with simulations. Further, this framework is demonstrated in several applications -- the SIS compartmental and logistic models, and birth-death processes with resetting. Finally, we solve the practically relevant problem of inferring the first passage time distribution from the first detection time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا