ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Computation of Monge Maps with General Costs

62   0   0.0 ( 0 )
 نشر من قبل Shaojun Ma
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Monge map refers to the optimal transport map between two probability distributions and provides a principled approach to transform one distribution to another. In spite of the rapid developments of the numerical methods for optimal transport problems, computing the Monge maps remains challenging, especially for high dimensional problems. In this paper, we present a scalable algorithm for computing the Monge map between two probability distributions. Our algorithm is based on a weak form of the optimal transport problem, thus it only requires samples from the marginals instead of their analytic expressions, and can accommodate optimal transport between two distributions with different dimensions. Our algorithm is suitable for general cost functions, compared with other existing methods for estimating Monge maps using samples, which are usually for quadratic costs. The performance of our algorithms is demonstrated through a series of experiments with both synthetic and realistic data.



قيم البحث

اقرأ أيضاً

We investigate the general structure of optimal investment and consumption with small proportional transaction costs. For a safe asset and a risky asset with general continuous dynamics, traded with random and time-varying but small transaction costs , we derive simple formal asymptotics for the optimal policy and welfare. These reveal the roles of the investors preferences as well as the market and cost dynamics, and also lead to a fully dynamic model for the implied trading volume. In frictionless models that can be solved in closed form, explicit formulas for the leading-order corrections due to small transaction costs are obtained.
487 - Yu Sun , Zihui Wu , Xiaojian Xu 2020
Plug-and-play priors (PnP) is a broadly applicable methodology for solving inverse problems by exploiting statistical priors specified as denoisers. Recent work has reported the state-of-the-art performance of PnP algorithms using pre-trained deep ne ural nets as denoisers in a number of imaging applications. However, current PnP algorithms are impractical in large-scale settings due to their heavy computational and memory requirements. This work addresses this issue by proposing an incremental variant of the widely used PnP-ADMM algorithm, making it scalable to large-scale datasets. We theoretically analyze the convergence of the algorithm under a set of explicit assumptions, extending recent theoretical results in the area. Additionally, we show the effectiveness of our algorithm with nonsmooth data-fidelity terms and deep neural net priors, its fast convergence compared to existing PnP algorithms, and its scalability in terms of speed and memory.
Computing optimal transport maps between high-dimensional and continuous distributions is a challenging problem in optimal transport (OT). Generative adversarial networks (GANs) are powerful generative models which have been successfully applied to l earn maps across high-dimensional domains. However, little is known about the nature of the map learned with a GAN objective. To address this problem, we propose a generative adversarial model in which the discriminators objective is the $2$-Wasserstein metric. We show that during training, our generator follows the $W_2$-geodesic between the initial and the target distributions. As a consequence, it reproduces an optimal map at the end of training. We validate our approach empirically in both low-dimensional and high-dimensional continuous settings, and show that it outperforms prior methods on image data.
We present GSPMD, an automatic, compiler-based parallelization system for common machine learning computation graphs. It allows users to write programs in the same way as for a single device, then give hints through a few annotations on how to distri bute tensors, based on which GSPMD will parallelize the computation. Its representation of partitioning is simple yet general, allowing it to express different or mixed paradigms of parallelism on a wide variety of models. GSPMD infers the partitioning for every operator in the graph based on limited user annotations, making it convenient to scale up existing single-device programs. It solves several technical challenges for production usage, such as static shape constraints, uneven partitioning, exchange of halo data, and nested operator partitioning. These techniques allow GSPMD to achieve 50% to 62% compute utilization on 128 to 2048 Cloud TPUv3 cores for models with up to one trillion parameters. GSPMD produces a single program for all devices, which adjusts its behavior based on a run-time partition ID, and uses collective operators for cross-device communication. This property allows the system itself to be scalable: the compilation time stays constant with increasing number of devices.
An investor with constant absolute risk aversion trades a risky asset with general It^o-dynamics, in the presence of small proportional transaction costs. In this setting, we formally derive a leading-order optimal trading policy and the associated w elfare, expressed in terms of the local dynamics of the frictionless optimizer. By applying these results in the presence of a random endowment, we obtain asymptotic formulas for utility indifference prices and hedging strategies in the presence of small transaction costs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا