ترغب بنشر مسار تعليمي؟ اضغط هنا

Training Strategies for Deep Learning Gravitational-Wave Searches

75   0   0.0 ( 0 )
 نشر من قبل Marlin Benedikt Sch\\\"afer
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Compact binary systems emit gravitational radiation which is potentially detectable by current Earth bound detectors. Extracting these signals from the instruments background noise is a complex problem and the computational cost of most current searches depends on the complexity of the source model. Deep learning may be capable of finding signals where current algorithms hit computational limits. Here we restrict our analysis to signals from non-spinning binary black holes and systematically test different strategies by which training data is presented to the networks. To assess the impact of the training strategies, we re-analyze the first published networks and directly compare them to an equivalent matched-filter search. We find that the deep learning algorithms can generalize low signal-to-noise ratio (SNR) signals to high SNR ones but not vice versa. As such, it is not beneficial to provide high SNR signals during training, and fastest convergence is achieved when low SNR samples are provided early on. During testing we found that the networks are sometimes unable to recover any signals when a false alarm probability $<10^{-3}$ is required. We resolve this restriction by applying a modification we call unbounded Softmax replacement (USR) after training. With this alteration we find that the machine learning search retains $geq 97.5%$ of the sensitivity of the matched-filter search down to a false-alarm rate of 1 per month.



قيم البحث

اقرأ أيضاً

Gravitational waves from the coalescence of compact-binary sources are now routinely observed by Earth bound detectors. The most sensitive search algorithms convolve many different pre-calculated gravitational waveforms with the detector data and loo k for coincident matches between different detectors. Machine learning is being explored as an alternative approach to building a search algorithm that has the prospect to reduce computational costs and target more complex signals. In this work we construct a two-detector search for gravitational waves from binary black hole mergers using neural networks trained on non-spinning binary black hole data from a single detector. The network is applied to the data from both observatories independently and we check for events coincident in time between the two. This enables the efficient analysis of large quantities of background data by time-shifting the independent detector data. We find that while for a single detector the network retains $91.5%$ of the sensitivity matched filtering can achieve, this number drops to $83.9%$ for two observatories. To enable the network to check for signal consistency in the detectors, we then construct a set of simple networks that operate directly on data from both detectors. We find that none of these simple two-detector networks are capable of improving the sensitivity over applying networks individually to the data from the detectors and searching for time coincidences.
In recent years, convolutional neural network (CNN) and other deep learning models have been gradually introduced into the area of gravitational-wave (GW) data processing. Compared with the traditional matched-filtering techniques, CNN has significan t advantages in efficiency in GW signal detection tasks. In addition, matched-filtering techniques are based on the template bank of the existing theoretical waveform, which makes it difficult to find GW signals beyond theoretical expectation. In this paper, based on the task of GW detection of binary black holes, we introduce the optimization techniques of deep learning, such as batch normalization and dropout, to CNN models. Detailed studies of model performance are carried out. Through this study, we recommend to use batch normalization and dropout techniques in CNN models in GW signal detection tasks. Furthermore, we investigate the generalization ability of CNN models on different parameter ranges of GW signals. We point out that CNN models are robust to the variation of the parameter range of the GW waveform. This is a major advantage of deep learning models over matched-filtering techniques.
The large sky localization regions offered by the gravitational-wave interferometers require efficient follow-up of the many counterpart candidates identified by the wide field-of-view telescopes. Given the restricted telescope time, the creation of prioritized lists of the many identified candidates becomes mandatory. Towards this end, we use text{astrorapid}, a multi-band photometric lightcurve classifier, to differentiate between kilonovae, supernovae, and other possible transients. We demonstrate our method on the photometric observations of real events. In addtion, the classification performance is tested on simulated lightcurves, both ideally and realistically sampled. We show that after only a few days of observations of an astronomical object, it is possible to rule out candidates as supernovae and other known transients.
147 - C. Palomba 2012
We present results from searches of recent LIGO and Virgo data for continuous gravitational wave signals (CW) from spinning neutron stars and for a stochastic gravitational wave background (SGWB). The first part of the talk is devoted to CW analysis with a focus on two types of searches. In the targeted search of known neutron stars a precise knowledge of the star parameters is used to apply optimal filtering methods. In the absence of a signal detection, in a few cases, an upper limit on strain amplitude can be set that beats the spindown limit derived from attributing spin-down energy loss to the emission of gravitational waves. In contrast, blind all-sky searches are not directed at specific sources, but rather explore as large a portion of the parameter space as possible. Fully coherent methods cannot be used for these kind of searches which pose a non trivial computational challenge. The second part of the talk is focused on SGWB searches. A stochastic background of gravitational waves is expected to be produced by the superposition of many incoherent sources of cosmological or astrophysical origin. Given the random nature of this kind of signal, it is not possible to distinguish it from noise using a single detector. A typical data analysis strategy relies on cross-correlating the data from a pair or several pairs of detectors, which allows discriminating the searched signal from instrumental noise. Expected sensitivities and prospects for detection from the next generation of interferometers are also discussed for both kind of sources.
Gravitational wave (GW) detection is now commonplace and as the sensitivity of the global network of GW detectors improves, we will observe $mathcal{O}(100)$s of transient GW events per year. The current methods used to estimate their source paramete rs employ optimally sensitive but computationally costly Bayesian inference approaches where typical analyses have taken between 6 hours and 5 days. For binary neutron star and neutron star black hole systems prompt counterpart electromagnetic (EM) signatures are expected on timescales of 1 second -- 1 minute and the current fastest method for alerting EM follow-up observers, can provide estimates in $mathcal{O}(1)$ minute, on a limited range of key source parameters. Here we show that a conditional variational autoencoder pre-trained on binary black hole signals can return Bayesian posterior probability estimates. The training procedure need only be performed once for a given prior parameter space and the resulting trained machine can then generate samples describing the posterior distribution $sim 6$ orders of magnitude faster than existing techniques.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا