ﻻ يوجد ملخص باللغة العربية
This paper describes a novel diffusion model, DyDiff-VAE, for information diffusion prediction on social media. Given the initial content and a sequence of forwarding users, DyDiff-VAE aims to estimate the propagation likelihood for other potential users and predict the corresponding user rankings. Inferring user interests from diffusion data lies the foundation of diffusion prediction, because users often forward the information in which they are interested or the information from those who share similar interests. Their interests also evolve over time as the result of the dynamic social influence from neighbors and the time-sensitive information gained inside/outside the social media. Existing works fail to model users intrinsic interests from the diffusion data and assume user interests remain static along the time. DyDiff-VAE advances the state of the art in two directions: (i) We propose a dynamic encoder to infer the evolution of user interests from observed diffusion data. (ii) We propose a dual attentive decoder to estimate the propagation likelihood by integrating information from both the initial cascade content and the forwarding user sequence. Extensive experiments on four real-world datasets from Twitter and Youtube demonstrate the advantages of the proposed model; we show that it achieves 43.3% relative gains over the best baseline on average. Moreover, it has the lowest run-time compared with recurrent neural network based models.
Information diffusion prediction is a fundamental task for understanding the information propagation process. It has wide applications in such as misinformation spreading prediction and malicious account detection. Previous works either concentrate o
Variational Autoencoder is a scalable method for learning latent variable models of complex data. It employs a clear objective that can be easily optimized. However, it does not explicitly measure the quality of learned representations. We propose a
Learning interpretable and disentangled representations of data is a key topic in machine learning research. Variational Autoencoder (VAE) is a scalable method for learning directed latent variable models of complex data. It employs a clear and inter
Although substantial efforts have been made to learn disentangled representations under the variational autoencoder (VAE) framework, the fundamental properties to the dynamics of learning of most VAE models still remain unknown and under-investigated
In this big data era, more and more social activities are digitized thereby becoming traceable, and thus the studies of social networks attract increasing attention from academia. It is widely believed that social networks play important role in the