ﻻ يوجد ملخص باللغة العربية
We classify radial timelike geodesic motion of the exterior non-extremal Kerr spacetime by performing a taxonomy of inequivalent root structures of the first order radial geodesic equation using a novel compact notation and by implementing the constraints from polar, time and azimuthal motion. Four generic root structures with only simple roots give rise to eight non-generic root structures when either one root becomes coincident with the horizon, one root vanishes or two roots becomes coincident. We derive the explicit phase space of all such root systems in the basis of energy, angular momentum and Carters constant and classify whether each corresponding radial geodesic motion is allowed or disallowed from existence of polar, time and azimuthal motion. The classification of radial motion within the ergoregion for both positive and negative energies leads to 6 distinguished values of the Kerr angular momentum. The classification of null radial motion and near-horizon extremal Kerr radial motion are obtained as limiting cases and compared with the literature. We explicitly parametrize the separatrix describing root systems with double roots as the union of the following three regions that are described by the same quartic respectively obtained when (1) the pericenter of bound motion becomes a double root; (2) the eccentricity of bound motion becomes zero; (3) the turning point of unbound motion becomes a double root.
Bound geodesic orbits around a Kerr black hole can be parametrized by three constants of the motion: the (specific) orbital energy, angular momentum and Carter constant. Generically, each orbit also has associated with it three frequencies, related t
We study the free motion of a massive particle moving in the background of a Finslerian deformation of a plane gravitational wave in Einsteins General Relativity. The deformation is a curved version of a one-parameter family of Relativistic Finsler s
In a recent paper (Phys. Dark Univ. {bf 31}, 100744 (2021)) it has been obtained new static black hole solutions with primary hairs by the Gravitational Decoupling. In this work we either study the geodesic motion of massive and massless particles ar
Recent works showing that homogeneous and isotropic cosmologies involving scalar fields correspond to geodesics of certain augmented spaces are generalized to the non-minimal coupling case. As the Maupertuis-Jacobi principle in classical mechanics, t
In this paper we study geodesic motion around a distorted Schwarzschild black hole. We consider both timelike and null geodesics which are confined to the black holes equatorial plane. Such geodesics generically exist if the distortion field has only