ﻻ يوجد ملخص باللغة العربية
Ground-based Whole Sky Imagers (WSIs) are increasingly being used for various remote sensing applications. While the fundamental requirements of a WSI are to make it climate-proof with an ability to capture high resolution images, cost also plays a significant role for wider scale adoption. This paper proposes an extremely low-cost alternative to the existing WSIs. In the designed model, high resolution images are captured with auto adjusting shutter speeds based on the surrounding light intensity. Furthermore, a manual data backup option using a portable memory drive is implemented for remote locations with no internet access.
Cloud imaging using ground-based whole sky imagers is essential for a fine-grained understanding of the effects of cloud formations, which can be useful in many applications. Some such imagers are available commercially, but their cost is relatively
Ground-based whole sky imagers (WSIs) can provide localized images of the sky of high temporal and spatial resolution, which permits fine-grained cloud observation. In this paper, we show how images taken by WSIs can be used to estimate solar radiati
Ground-based whole sky imagers are popular for monitoring cloud formations, which is necessary for various applications. We present two new Wide Angle High-Resolution Sky Imaging System (WAHRSIS) models, which were designed especially to withstand th
Modeling geophysical processes as low-dimensional dynamical systems and regressing their vector field from data is a promising approach for learning emulators of such systems. We show that when the kernel of these emulators is also learned from data
FIRST, the Fibered Imager foR a Single Telescope instrument, is an ultra-high angular resolution spectro-imager, able to deliver calibrated images and measurements beyond the telescope diffraction limit, a regime that is out of reach for conventional