ﻻ يوجد ملخص باللغة العربية
It has been known that the Schwarzschild-de Sitter (Sch-dS) black hole may not be in thermal equilibrium and also be found to be thermodynamically unstable in the standard black hole thermodynamics. In the present work, we investigate the possibility to realize the thermodynamical stability of the Sch-dS black hole as an effective system by using the R{e}nyi statistics, which includes the non-extensive nature of black holes. Our results indicate that the non-extensivity allows the black hole to be thermodynamically stable which gives rise to the lower bound on the non-extensive parameter. By comparing the results to ones in the separated system approach, we find that the effective temperature is always smaller than the black hole horizon temperature and the thermodynamically stable black hole in effective approach is always larger than one in separated approach at a certain temperature. There exists only the zeroth-order phase transition from the the hot gas phase to the black hole phase for the effective system while it is possible to have the transition of both the zeroth order and the first order for the separated system.
We study the behavior of the quasinormal modes (QNMs) of massless and massive linear waves on Schwarzschild-de Sitter black holes as the black hole mass tends to 0. Via uniform estimates for a degenerating family of ODEs, we show that in bounded subs
We compute the quasinormal spectra for scalar, Dirac and electromagnetic perturbations of the Schwarzschild-de Sitter geometry in the framework of scale-dependent gravity, which is one of the current approaches to quantum gravity. Adopting the widely
We investigate the thermodynamics of Gauss-Bonnet black holes in asymptotically de Sitter spacetimes embedded in an isothermal cavity, via a Euclidean action approach. We consider both charged and uncharged black holes, working in the extended phase
Suppose a one-dimensional isometry group acts on a space, we can consider a submergion induced by the isometry, namely we obtain an orbit space by identification of points on the orbit of the group action. We study the causal structure of the orbit s
Creation of thermal distribution of particles by a black hole is independent of the detail of gravitational collapse, making the construction of the eternal horizons suffice to address the problem in asymptotically flat spacetimes. For eternal de Sit