ﻻ يوجد ملخص باللغة العربية
We investigate the thermodynamics of Gauss-Bonnet black holes in asymptotically de Sitter spacetimes embedded in an isothermal cavity, via a Euclidean action approach. We consider both charged and uncharged black holes, working in the extended phase space where the cosmological constant is treated as a thermodynamic pressure. We examine the phase structure of these black holes through their free energy. In the uncharged case, we find both Hawking-Page and small-to-large black hole phase transitions, whose character depends on the sign of the Gauss-Bonnet coupling. In the charged case, we demonstrate the presence of a swallowtube, signaling a compact region in phase space where a small-to-large black hole transition occurs.
We study the instability of the charged Gauss-Bonnet de Sitter black holes under gravito-electromagnetic perturbations. We adopt two criteria to search for an instability of the scalar type perturbations, including the local instability criterion bas
Understanding black hole microstructure via the thermodynamic geometry can provide us with more deeper insight into black hole thermodynamics in modified gravities. In this paper, we study the black hole phase transition and Ruppeiner geometry for th
The fundamental equation of the thermodynamic system gives the relation between internal energy, entropy and volume of two adjacent equilibrium states. Taking higher dimensional charged Gauss-Bonnet black hole in de Sitter space as a thermodynamic sy
In this paper, we investigate a class of $5$-dimensional black holes in the presence of Gauss-Bonnet gravity with dyonic charges. At first step, thermodynamical quantities of the black holes and their behaviors are explored for different limits. Ther
We obtain rotating black hole solutions to the novel 3D Gauss-Bonnet theory of gravity recently proposed. These solutions generalize the BTZ metric and are not of constant curvature. They possess an ergoregion and outer horizon, but do not have an in